論文の概要: Leveraging Large Language Models through Natural Language Processing to provide interpretable Machine Learning predictions of mental deterioration in real time
- arxiv url: http://arxiv.org/abs/2409.03375v1
- Date: Thu, 5 Sep 2024 09:27:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:10:19.038868
- Title: Leveraging Large Language Models through Natural Language Processing to provide interpretable Machine Learning predictions of mental deterioration in real time
- Title(参考訳): 自然言語処理による大規模言語モデルの活用
- Authors: Francisco de Arriba-Pérez, Silvia García-Méndez,
- Abstract要約: 公式推計によると、世界中で5000万人が認知症に罹患しており、毎年1000万人の新しい患者が増えている。
この目的のために、人工知能と計算言語学は自然言語分析、パーソナライズされたアセスメント、モニタリング、治療に活用することができる。
この仕事には、手頃で柔軟な、非侵襲的でパーソナライズされた診断システムを提供しています。
- 参考スコア(独自算出の注目度): 5.635300481123079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on official estimates, 50 million people worldwide are affected by dementia, and this number increases by 10 million new patients every year. Without a cure, clinical prognostication and early intervention represent the most effective ways to delay its progression. To this end, Artificial Intelligence and computational linguistics can be exploited for natural language analysis, personalized assessment, monitoring, and treatment. However, traditional approaches need more semantic knowledge management and explicability capabilities. Moreover, using Large Language Models (LLMs) for cognitive decline diagnosis is still scarce, even though these models represent the most advanced way for clinical-patient communication using intelligent systems. Consequently, we leverage an LLM using the latest Natural Language Processing (NLP) techniques in a chatbot solution to provide interpretable Machine Learning prediction of cognitive decline in real-time. Linguistic-conceptual features are exploited for appropriate natural language analysis. Through explainability, we aim to fight potential biases of the models and improve their potential to help clinical workers in their diagnosis decisions. More in detail, the proposed pipeline is composed of (i) data extraction employing NLP-based prompt engineering; (ii) stream-based data processing including feature engineering, analysis, and selection; (iii) real-time classification; and (iv) the explainability dashboard to provide visual and natural language descriptions of the prediction outcome. Classification results exceed 80 % in all evaluation metrics, with a recall value for the mental deterioration class about 85 %. To sum up, we contribute with an affordable, flexible, non-invasive, personalized diagnostic system to this work.
- Abstract(参考訳): 公式推計によると、世界中で5000万人が認知症に罹患しており、毎年1000万人の新規患者が増えている。
治療法がなければ、臨床予後と早期介入は、その進行を遅らせる最も効果的な方法である。
この目的のために、人工知能と計算言語学は自然言語分析、パーソナライズされたアセスメント、モニタリング、治療に活用することができる。
しかし、従来のアプローチでは、よりセマンティックな知識管理と説明可能性の能力が必要です。
さらに,認知低下診断にLarge Language Models (LLMs) を用いることは,知能システムを用いた臨床と臨床のコミュニケーションの最も進んだ方法であるにもかかわらず,依然として不十分である。
その結果、チャットボットソリューションにおける最新の自然言語処理(NLP)技術を用いてLLMを活用し、リアルタイムに認知低下の予測を行うことができる。
言語-概念的特徴は、適切な自然言語分析に利用される。
説明可能性を通じて、モデルの潜在的なバイアスに対処し、臨床労働者の診断決定を支援する可能性を向上させることを目的としている。
より詳しくは、提案されたパイプラインは、
i) NLPに基づくプロンプトエンジニアリングを用いたデータ抽出
二 特徴工学、分析及び選択を含むストリームベースのデータ処理
(三)リアルタイム分類、及び
(4)予測結果の視覚的および自然言語的記述を提供する説明可能性ダッシュボード。
評価項目の分類結果は, 評価指標の80%を超え, 精神劣化学級のリコール値は約85%であった。
要約すると、私たちはこの研究に手頃で柔軟な、非侵襲的でパーソナライズされた診断システムを提供しています。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
我々は,多センサデータから臨床的に有用な知見を合成するために,大規模言語モデルを活用する新しいアプローチを採っている。
うつ病や不安などの症状とデータの傾向がどのように関連しているかを,LSMを用いて推論する思考促進手法の連鎖を構築した。
GPT-4のようなモデルでは数値データの75%を正確に参照しており、臨床参加者は、この手法を用いて自己追跡データを解釈することへの強い関心を表明している。
論文 参考訳(メタデータ) (2023-11-21T23:53:27Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Assessing Language Disorders using Artificial Intelligence: a Paradigm
Shift [0.13393465195776774]
言語障害、言語障害、コミュニケーション障害は、ほとんどの神経変性症候群にみられる。
我々は,機械学習手法,自然言語処理,現代人工知能(AI)を言語評価に活用することは,従来の手作業による評価よりも優れていると論じている。
論文 参考訳(メタデータ) (2023-05-31T17:20:45Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
診断推論ベンチマーク(DR.BENCH)は臨床診断推論能力を持つcNLPモデルの開発と評価のための新しいベンチマークである。
DR.BENCHは、訓練済みの言語モデルを評価するための自然言語生成フレームワークとして設計された最初の臨床スイートである。
論文 参考訳(メタデータ) (2022-09-29T16:05:53Z) - Rationale production to support clinical decision-making [31.66739991129112]
本稿では,病院の退院予測にInfoCalを適用した。
選択された解釈可能性を持つ各提示モデルや特徴重要度法は,それぞれ異なる結果をもたらす。
論文 参考訳(メタデータ) (2021-11-15T09:02:10Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z) - A Multi-modal Machine Learning Approach and Toolkit to Automate
Recognition of Early Stages of Dementia among British Sign Language Users [5.8720142291102135]
タイムリーな診断は、必要なサポートと適切な薬を得るのに役立つ。
画像とビデオの分析と理解のためのディープラーニングベースのアプローチは有望である。
このアプローチは過度に適合せず、スケールアップの可能性を秘めています。
論文 参考訳(メタデータ) (2020-10-01T16:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。