論文の概要: KAN See In the Dark
- arxiv url: http://arxiv.org/abs/2409.03404v1
- Date: Thu, 5 Sep 2024 10:41:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:00:20.797879
- Title: KAN See In the Dark
- Title(参考訳): Kan See in the Dark (英語)
- Authors: Aoxiang Ning, Minglong Xue, Jinhong He, Chengyun Song,
- Abstract要約: 既存の低照度画像強調法は、不均一照明とノイズ効果により、通常の低照度画像と低照度画像との複雑な非線形関係に適合することが困難である。
最近提案されたコルモゴロフ・アルノルドネットワーク(KAN)はスプラインベースの畳み込み層と学習可能なアクティベーション関数を備え、非線形依存を効果的に捉えることができる。
本稿では,kanをベースとしたkan-Blockを設計し,低照度画像強調に革新的に適用し,線形ネットワーク構造に制約された現在の手法の限界を効果的に緩和し,解釈可能性の欠如を解消する。
- 参考スコア(独自算出の注目度): 2.9873893715462185
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Existing low-light image enhancement methods are difficult to fit the complex nonlinear relationship between normal and low-light images due to uneven illumination and noise effects. The recently proposed Kolmogorov-Arnold networks (KANs) feature spline-based convolutional layers and learnable activation functions, which can effectively capture nonlinear dependencies. In this paper, we design a KAN-Block based on KANs and innovatively apply it to low-light image enhancement. This method effectively alleviates the limitations of current methods constrained by linear network structures and lack of interpretability, further demonstrating the potential of KANs in low-level vision tasks. Given the poor perception of current low-light image enhancement methods and the stochastic nature of the inverse diffusion process, we further introduce frequency-domain perception for visually oriented enhancement. Extensive experiments demonstrate the competitive performance of our method on benchmark datasets. The code will be available at: https://github.com/AXNing/KSID}{https://github.com/AXNing/KSID.
- Abstract(参考訳): 既存の低照度画像強調法は、不均一照明とノイズ効果により、通常の低照度画像と低照度画像との複雑な非線形関係に適合することが困難である。
最近提案されたコルモゴロフ・アルノルドネットワーク(KAN)はスプラインベースの畳み込み層と学習可能なアクティベーション関数を備え、非線形依存を効果的に捉えることができる。
本稿では,kansをベースとしたkan-Blockを設計し,低照度画像強調に革新的に適用する。
この手法は線形ネットワーク構造に制約された現在の手法の限界を効果的に緩和し、また低レベル視覚タスクにおけるkanの可能性を実証する。
現行の低照度画像強調法や逆拡散過程の確率的性質の認識に乏しいことから,我々はさらに周波数領域の認識を導入して視覚指向の強調を行う。
大規模な実験により,ベンチマークデータセット上での本手法の競合性能が実証された。
コードは以下の通りである。 https://github.com/AXNing/KSID}{https://github.com/AXNing/KSID。
関連論文リスト
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
低照度画像強調(LIE)は、低照度環境において劣化した画像を高精度かつ効率的に回収することを目的としている。
近年の先進的なLIE技術は、多くの低正規の光画像対、ネットワークパラメータ、計算資源を必要とするディープニューラルネットワークを使用している。
拡散先行とルックアップテーブルに基づく新しい非教師付きLIEフレームワークを考案し,低照度画像の効率的な回復を実現する。
論文 参考訳(メタデータ) (2024-09-27T16:37:27Z) - Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement [2.9873893715462185]
ゼロLEDと呼ばれる低照度画像強調のための新しいゼロ参照光推定拡散モデルを提案する。
拡散モデルの安定収束能力を利用して、低照度領域と実常照度領域の間のギャップを埋める。
ゼロ参照学習を通じてペアのトレーニングデータへの依存を緩和する。
論文 参考訳(メタデータ) (2024-03-05T11:39:17Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
本稿では,低照度画像強調問題に対処する拡散型フレームワークについて検討する。
我々は、その固有のODE-軌道の正規化を提唱する。
実験により,提案手法は低照度化において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-10-26T17:01:52Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Retinexformer: One-stage Retinex-based Transformer for Low-light Image
Enhancement [96.09255345336639]
低照度画像の高精細化のために,原理化された1段Retinex-based Framework (ORF) を定式化する。
ORFはまず照明情報を推定し、低照度画像を照らす。
我々のアルゴリズムであるRetinexformerは13のベンチマークで最先端の手法を大幅に上回っている。
論文 参考訳(メタデータ) (2023-03-12T16:54:08Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
CIGAN(Cycle-Interactive Generative Adversarial Network)は、低照度画像間の照明分布の転送を改善できるだけでなく、詳細な信号も操作できる。
特に、提案した低照度誘導変換は、低照度GAN生成器から劣化GAN生成器へ、低照度画像の特徴をフォワードする。
論文 参考訳(メタデータ) (2022-07-03T06:37:46Z) - SurroundNet: Towards Effective Low-Light Image Enhancement [43.99545410176845]
我々は150ドル未満のパラメータしか含まない新しいSurroundNetを提案し、非常に競争力のある性能を実現している。
提案するネットワークは、特徴空間における単一スケールレチネックスの新規拡張と見なせる複数の適応リチネックスブロック(ARBlock)から構成される。
また、低照度化前の低照度画像の平滑化のために、LED(Low-Exposure Denoiser)を導入している。
論文 参考訳(メタデータ) (2021-10-11T09:10:19Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z) - Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [156.18634427704583]
本稿では、深部ネットワークを用いた画像特異的曲線推定のタスクとして光強調を定式化するゼロ参照深部曲線推定法(Zero-DCE)を提案する。
提案手法は,DCE-Netという軽量な深層ネットワークをトレーニングし,画像のダイナミックレンジ調整のための画素幅と高次曲線を推定する。
論文 参考訳(メタデータ) (2020-01-19T13:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。