Reinforcement Learning Approach to Optimizing Profilometric Sensor Trajectories for Surface Inspection
- URL: http://arxiv.org/abs/2409.03429v1
- Date: Thu, 5 Sep 2024 11:20:12 GMT
- Title: Reinforcement Learning Approach to Optimizing Profilometric Sensor Trajectories for Surface Inspection
- Authors: Sara Roos-Hoefgeest, Mario Roos-Hoefgeest, Ignacio Alvarez, Rafael C. González,
- Abstract summary: High-precision surface defect detection in manufacturing is essential for ensuring quality control.
Laser triangulation profil sensors are key to this process.
This paper presents a novel approach to optimize inspection trajectories for profilometric sensors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-precision surface defect detection in manufacturing is essential for ensuring quality control. Laser triangulation profilometric sensors are key to this process, providing detailed and accurate surface measurements over a line. To achieve a complete and precise surface scan, accurate relative motion between the sensor and the workpiece is required. It is crucial to control the sensor pose to maintain optimal distance and relative orientation to the surface. It is also important to ensure uniform profile distribution throughout the scanning process. This paper presents a novel Reinforcement Learning (RL) based approach to optimize robot inspection trajectories for profilometric sensors. Building upon the Boustrophedon scanning method, our technique dynamically adjusts the sensor position and tilt to maintain optimal orientation and distance from the surface, while also ensuring a consistent profile distance for uniform and high-quality scanning. Utilizing a simulated environment based on the CAD model of the part, we replicate real-world scanning conditions, including sensor noise and surface irregularities. This simulation-based approach enables offline trajectory planning based on CAD models. Key contributions include the modeling of the state space, action space, and reward function, specifically designed for inspection applications using profilometric sensors. We use Proximal Policy Optimization (PPO) algorithm to efficiently train the RL agent, demonstrating its capability to optimize inspection trajectories with profilometric sensors. To validate our approach, we conducted several experiments where a model trained on a specific training piece was tested on various parts in simulation. Also, we conducted a real-world experiment by executing the optimized trajectory, generated offline from a CAD model, to inspect a part using a UR3e robotic arm model.
Related papers
- Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - $ν$-DBA: Neural Implicit Dense Bundle Adjustment Enables Image-Only Driving Scene Reconstruction [31.64067619807023]
$nu$-DBA implements geometric dense bundle adjustment (DBA) using 3D neural implicit surfaces for map parametrization.
We fine-tune the optical flow model with per-scene self-supervision to further improve the quality of the dense mapping.
arXiv Detail & Related papers (2024-04-29T05:29:26Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms.
These functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor.
In this study, we provide two novel solutions to estimate these calibration parameters.
arXiv Detail & Related papers (2024-03-01T20:56:14Z) - Model-aware reinforcement learning for high-performance Bayesian
experimental design in quantum metrology [0.5461938536945721]
Quantum sensors offer control flexibility during estimation by allowing manipulation by the experimenter across various parameters.
We introduce a versatile procedure capable of optimizing a wide range of problems in quantum metrology, estimation, and hypothesis testing.
We combine model-aware reinforcement learning (RL) with Bayesian estimation based on particle filtering.
arXiv Detail & Related papers (2023-12-28T12:04:15Z) - Predicting Surface Texture in Steel Manufacturing at Speed [81.90215579427463]
Control of the surface texture of steel strip during the galvanizing and temper rolling processes is essential to satisfy customer requirements.
We propose the use of machine learning to improve accuracy of the transformation from inline laser reflection measurements to a prediction of surface properties.
arXiv Detail & Related papers (2023-01-20T12:11:03Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Unified Data Collection for Visual-Inertial Calibration via Deep
Reinforcement Learning [24.999540933593273]
This work presents a novel formulation to learn a motion policy to be executed on a robot arm for automatic data collection.
Our approach models the calibration process compactly using model-free deep reinforcement learning.
In simulation we are able to perform calibrations 10 times faster than hand-crafted policies, which transfers to a real-world speed up of 3 times over a human expert.
arXiv Detail & Related papers (2021-09-30T10:03:56Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Learning Trajectories for Visual-Inertial System Calibration via
Model-based Heuristic Deep Reinforcement Learning [34.58853427240756]
We present a novel approach to obtain favorable trajectories for visual-inertial system calibration using model-based deep reinforcement learning.
Our key contribution is to model the calibration process as a Markov decision process and then use model-based deep reinforcement learning with particle swarm optimization to establish a sequence of calibration trajectories to be performed by a robot arm.
arXiv Detail & Related papers (2020-11-04T23:20:15Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.