LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
- URL: http://arxiv.org/abs/2409.03456v2
- Date: Wed, 18 Sep 2024 12:12:41 GMT
- Title: LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
- Authors: Hanyang Yu, Xiaoxiao Long, Ping Tan,
- Abstract summary: sparse-view reconstruction is inherently ill-posed and under-constrained.
We introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images.
Our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods.
- Score: 34.91966359570867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SCube: Instant Large-Scale Scene Reconstruction using VoxSplats [55.383993296042526]
We present SCube, a novel method for reconstructing large-scale 3D scenes (geometry, appearance, and semantics) from a sparse set of posed images.
Our method encodes reconstructed scenes using a novel representation VoxSplat, which is a set of 3D Gaussians supported on a high-resolution sparse-voxel scaffold.
arXiv Detail & Related papers (2024-10-26T00:52:46Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction [36.46068581419659]
Real-time 3D reconstruction of surgical scenes plays a vital role in computer-assisted surgery.
Recent advancements in 3D Gaussian Splatting have shown great potential for real-time novel view synthesis.
We propose the first SfM-free 3DGS-based method for surgical scene reconstruction.
arXiv Detail & Related papers (2024-07-03T08:49:35Z) - Sp2360: Sparse-view 360 Scene Reconstruction using Cascaded 2D Diffusion Priors [51.36238367193988]
We tackle sparse-view reconstruction of a 360 3D scene using priors from latent diffusion models (LDM)
We present SparseSplat360, a method that employs a cascade of in-painting and artifact removal models to fill in missing details and clean novel views.
Our method generates entire 360 scenes from as few as 9 input views, with a high degree of foreground and background detail.
arXiv Detail & Related papers (2024-05-26T11:01:39Z) - DeblurGS: Gaussian Splatting for Camera Motion Blur [45.13521168573883]
We propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images.
We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting.
Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings.
arXiv Detail & Related papers (2024-04-17T13:14:52Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting [82.29476781526752]
We propose a framework to represent and render the 3D object with Gaussian splatting that achieves high rendering quality with only 4 input images.
GustafObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, OpenIllumination, and our-collected unposed images.
arXiv Detail & Related papers (2024-02-15T18:42:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.