論文の概要: LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones
- arxiv url: http://arxiv.org/abs/2409.03460v1
- Date: Thu, 5 Sep 2024 12:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:50:03.334534
- Title: LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones
- Title(参考訳): LowFormer: 畳み込みトランスフォーマーバックボーンのためのハードウェア効率の良い設計
- Authors: Moritz Nottebaum, Matteo Dunnhofer, Christian Micheloni,
- Abstract要約: 効率的な視覚バックボーンの研究は、畳み込みとトランスフォーマーブロックの混合モデルに進化しつつある。
我々は、MACではなく、実際のスループットとレイテンシの観点から、一般的なモジュールとアーキテクチャ設計の選択を分析します。
マクロデザインとマイクロデザインを組み合わせることで,LowFormerと呼ばれる,ハードウェア効率のよいバックボーンネットワークの新たなファミリを作ります。
- 参考スコア(独自算出の注目度): 10.435069781620957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in efficient vision backbones is evolving into models that are a mixture of convolutions and transformer blocks. A smart combination of both, architecture-wise and component-wise is mandatory to excel in the speedaccuracy trade-off. Most publications focus on maximizing accuracy and utilize MACs (multiply accumulate operations) as an efficiency metric. The latter however often do not measure accurately how fast a model actually is due to factors like memory access cost and degree of parallelism. We analyzed common modules and architectural design choices for backbones not in terms of MACs, but rather in actual throughput and latency, as the combination of the latter two is a better representation of the efficiency of models in real applications. We applied the conclusions taken from that analysis to create a recipe for increasing hardware-efficiency in macro design. Additionally we introduce a simple slimmed-down version of MultiHead Self-Attention, that aligns with our analysis. We combine both macro and micro design to create a new family of hardware-efficient backbone networks called LowFormer. LowFormer achieves a remarkable speedup in terms of throughput and latency, while achieving similar or better accuracy than current state-of-the-art efficient backbones. In order to prove the generalizability of our hardware-efficient design, we evaluate our method on GPU, mobile GPU and ARM CPU. We further show that the downstream tasks object detection and semantic segmentation profit from our hardware-efficient architecture. Code and models are available at https://github.com/ altair199797/LowFormer.
- Abstract(参考訳): 効率的な視覚バックボーンの研究は、畳み込みとトランスフォーマーブロックの混合モデルに進化しつつある。
アーキテクチャとコンポーネントの両面でのスマートな組み合わせは、スピード精度のトレードオフを克服することが必須です。
ほとんどの出版物は精度を最大化し、MACを効率の指標として利用する。
しかし後者は、メモリアクセスコストや並列性の程度といった要因によって、モデルが実際にどれだけの速度であるかを正確に測定しないことが多い。
我々は、MACではなく、実際のスループットとレイテンシにおいて、バックボーンの共通モジュールとアーキテクチャ設計の選択を分析した。
この分析から得られた結論を適用し,マクロ設計におけるハードウェア効率向上のためのレシピを作成した。
さらに、我々は、分析と整合した、シンプルなスリムダウンバージョンのマルチヘッドセルフアテンションを導入しました。
マクロデザインとマイクロデザインを組み合わせることで,LowFormerと呼ばれる,ハードウェア効率のよいバックボーンネットワークの新たなファミリを作ります。
LowFormerはスループットとレイテンシの点で目覚ましいスピードアップを実現しますが、現在の最先端の効率的なバックボーンと同じような、あるいは優れた精度を実現しています。
ハードウェア効率設計の一般化性を証明するため,GPU,モバイルGPU,ARM CPU上での手法の評価を行った。
さらに、ダウンストリームタスクのオブジェクト検出とセマンティックセグメンテーションの利益が、ハードウェア効率の良いアーキテクチャから得られることを示す。
コードとモデルはhttps://github.com/altair 199797/LowFormer.comで入手できる。
関連論文リスト
- AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
本稿では,畳み込みブロックと変圧器ブロックを組み合わせたハイブリッドアーキテクチャAsCANを紹介する。
AsCANは、認識、セグメンテーション、クラス条件画像生成など、さまざまなタスクをサポートしている。
次に、同じアーキテクチャをスケールして、大規模なテキスト・イメージタスクを解決し、最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-07T18:43:17Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre
Memory Units [5.830814457423021]
トランスフォーマーモデルは、多くのアプリケーションで高い精度を示してきたが、複雑さが高く、シーケンシャルな処理能力に欠けていた。
繰り返しモデルに対するアーキテクチャ上の変更が、Transformerモデルへのパフォーマンス向上にどのように役立つかを示す。
本稿では,このアーキテクチャのスパイクバージョンを紹介し,パッチ埋め込みおよびチャネルミキサーモジュール内の状態の利点を紹介する。
論文 参考訳(メタデータ) (2024-01-20T01:10:18Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
本稿では,リアルタイムセマンティックセグメンテーションのための効率的なデュアルレゾリューション変換器RTFormerを提案する。
CNNベースのモデルよりもパフォーマンスと効率のトレードオフが優れている。
主要なベンチマーク実験では,提案したRTFormerの有効性を示す。
論文 参考訳(メタデータ) (2022-10-13T16:03:53Z) - Faster Attention Is What You Need: A Fast Self-Attention Neural Network
Backbone Architecture for the Edge via Double-Condensing Attention Condensers [71.40595908386477]
本稿では,2重対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向対向
結果のバックボーン(AttendNeXtと呼ぶ)は、組み込みARMプロセッサ上で大幅に高い推論スループットを実現する。
これらの有望な結果は、さまざまな効率的なアーキテクチャ設計と自己アテンション機構の探索が、TinyMLアプリケーションのための興味深い新しいビルディングブロックにつながることを実証している。
論文 参考訳(メタデータ) (2022-08-15T02:47:33Z) - Model-Architecture Co-Design for High Performance Temporal GNN Inference
on FPGA [5.575293536755127]
実世界のアプリケーションは、リアルタイムストリーミング動的グラフに対して高いパフォーマンスの推論を必要とする。
本稿では,FPGA上でのメモリベースTGNNの推論のための新しいモデルアーキテクチャ共設計を提案する。
我々は、知識蒸留を用いて単純化されたモデルを訓練し、元のモデルと同じような精度でビザビザビザビザを保証します。
論文 参考訳(メタデータ) (2022-03-10T00:24:47Z) - Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions [11.769185588579488]
本稿では,アクセル実装に適した特性とともに,メモリ消費と遅延を低減した最先端性能を示す。
提案手法は,エッジ数に比例するメモリを必要とする競合手法とは対照的に,グラフ内の頂点数に比例するメモリを用いる。
GNNが表現力を大幅に高める技術であるアグリゲーター融合を提案し、標準のスパース行列乗算よりも19%の遅延がわずかに増加している。
論文 参考訳(メタデータ) (2021-04-03T20:54:36Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
画像中のすべての単語やオブジェクトに係わるクロスアテンション機構を備えたTransformerベースのアーキテクチャを頼りに、クロスモーダル検索プロセスのテキストとビジュアルインプットへの最先端のアプローチ。
事前学習したテキスト画像のマルチモーダルモデルを効率的な検索モデルに変換する新しい微調整フレームワークを提案する。
我々は,モノリンガル,マルチリンガル,ゼロショットにおける一連の標準クロスモーダル検索ベンチマーク実験を行い,最先端クロスエンコーダに対する精度向上と大幅な効率向上を実証した。
論文 参考訳(メタデータ) (2021-03-22T15:08:06Z) - Tidying Deep Saliency Prediction Architectures [6.613005108411055]
本稿では,入力特徴,マルチレベル統合,読み出しアーキテクチャ,損失関数の4つの主成分を同定する。
我々はSimpleNet と MDNSal という2つの新しいエンドツーエンドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-10T19:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。