Panopticon: a novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves
- URL: http://arxiv.org/abs/2409.03466v1
- Date: Thu, 5 Sep 2024 12:21:51 GMT
- Title: Panopticon: a novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves
- Authors: H. G. Vivien, M. Deleuil, N. Jannsen, J. De Ridder, D. Seynaeve, M. -A. Carpine, Y. Zerah,
- Abstract summary: We develop a deep learning model, Panopticon, to detect transits in high precision photometric light curves.
We trained the model on a set of simulated PLATO light curves in which we injected, at pixel level, either planetary, eclipsing binary, or background eclipsing binary signals.
The approach is able to recover 90% of our test population, including more than 25% of the Earth-analogs, even in the unfiltered light curves.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To prepare for the analyses of the future PLATO light curves, we develop a deep learning model, Panopticon, to detect transits in high precision photometric light curves. Since PLATO's main objective is the detection of temperate Earth-size planets around solar-type stars, the code is designed to detect individual transit events. The filtering step, required by conventional detection methods, can affect the transit, which could be an issue for long and shallow transits. To protect transit shape and depth, the code is also designed to work on unfiltered light curves. We trained the model on a set of simulated PLATO light curves in which we injected, at pixel level, either planetary, eclipsing binary, or background eclipsing binary signals. We also include a variety of noises in our data, such as granulation, stellar spots or cosmic rays. The approach is able to recover 90% of our test population, including more than 25% of the Earth-analogs, even in the unfiltered light curves. The model also recovers the transits irrespective of the orbital period, and is able to retrieve transits on a unique event basis. These figures are obtained when accepting a false alarm rate of 1%. When keeping the false alarm rate low (<0.01%), it is still able to recover more than 85% of the transit signals. Any transit deeper than 180ppm is essentially guaranteed to be recovered. This method is able to recover transits on a unique event basis, and does so with a low false alarm rate. Thanks to light curves being one-dimensional, model training is fast, on the order of a few hours per model. This speed in training and inference, coupled to the recovery effectiveness and precision of the model make it an ideal tool to complement, or be used ahead of, classical approaches.
Related papers
- NotPlaNET: Removing False Positives from Planet Hunters TESS with Machine Learning [1.2289361708127877]
We build a one-dimensional convolutional neural network (CNN) to separate eclipsing binaries and other false positives from potential planet candidates.
Our model keeps 100% of the planets for 16 of the 18 test sectors, while incorrectly flagging one planet candidate (0.3%) for one sector and two (0.6%) for the remaining sector.
arXiv Detail & Related papers (2024-05-28T15:29:40Z) - Computing Transiting Exoplanet Parameters with 1D Convolutional Neural
Networks [0.0]
Two 1D convolutional neural network models are presented.
One model operates on complete light curves and estimates the orbital period.
The other one operates on phase-folded light curves and estimates the semimajor axis of the orbit and the square of the planet-to-star radius ratio.
arXiv Detail & Related papers (2024-02-21T10:17:23Z) - One-dimensional Convolutional Neural Networks for Detecting Transiting
Exoplanets [39.58317527488534]
We develop an artificial neural network model that is able to detect transits in light curves obtained from different telescopes and surveys.
We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model.
arXiv Detail & Related papers (2023-12-12T10:56:27Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
curve-based lane representation is a popular approach in many lane detection methods.
We propose a new approach to the lane detection task by decomposing it into two parts: curve modeling and ground height regression.
arXiv Detail & Related papers (2023-09-19T11:24:14Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Distinguishing a planetary transit from false positives: a
Transformer-based classification for planetary transit signals [2.2530415657791036]
We present a new architecture for the automatic classification of transit signals.
Our proposed architecture is designed to capture the most significant features of a transit signal and stellar parameters.
We show that our architecture achieves competitive results concerning the CNNs applied for recognizing exoplanetary transit signals.
arXiv Detail & Related papers (2023-04-27T15:43:25Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Identifying Planetary Transit Candidates in TESS Full-Frame Image Light
Curves via Convolutional Neural Networks [1.2583362454189522]
Transiting Exoplanet Survey Satellite measured light from stars in 75% of the sky throughout its two year primary mission.
Millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets.
We present a convolutional neural network, which we train to identify planetary transit signals and dismiss false positives.
We present 181 new planet candidates identified by our network, which pass subsequent human vetting designed to rule out false positives.
arXiv Detail & Related papers (2021-01-26T16:40:51Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.