OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction
- URL: http://arxiv.org/abs/2507.23657v1
- Date: Thu, 31 Jul 2025 15:37:09 GMT
- Title: OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction
- Authors: Yang Gao, Po-Chien Luan, Kaouther Messaoud, Lan Feng, Alexandre Alahi,
- Abstract summary: We present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset.<n>Experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance.
- Score: 62.385417528148224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large-scale pre-training has advanced human trajectory prediction, a critical challenge remains: zero-shot transfer to unseen dataset with varying temporal dynamics. State-of-the-art pre-trained models often require fine-tuning to adapt to new datasets with different frame rates or observation horizons, limiting their scalability and practical utility. In this work, we systematically investigate this limitation and propose a robust solution. We first demonstrate that existing data-aware discrete models struggle when transferred to new scenarios with shifted temporal setups. We then isolate the temporal generalization from dataset shift, revealing that a simple, explicit conditioning mechanism for temporal metadata is a highly effective solution. Based on this insight, we present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset. Our experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance, reducing prediction error by over 70\% in challenging cross-setup scenarios. After fine-tuning, OmniTraj achieves state-of-the-art results on four datasets, including NBA, JTA, WorldPose, and ETH-UCY. The code is publicly available: https://github.com/vita-epfl/omnitraj
Related papers
- Unified Human Localization and Trajectory Prediction with Monocular Vision [64.19384064365431]
MonoTransmotion is a Transformer-based framework that uses only a monocular camera to jointly solve localization and prediction tasks.<n>We show that by jointly training both tasks with our unified framework, our method is more robust in real-world scenarios made of noisy inputs.
arXiv Detail & Related papers (2025-03-05T14:18:39Z) - ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction [15.624698974735654]
ASTRA (A Scene-aware TRAnsformer-based model for trajectory prediction) is a light-weight pedestrian trajectory forecasting model.<n>We utilise a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions.
arXiv Detail & Related papers (2025-01-16T23:28:30Z) - Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - DaFoEs: Mixing Datasets towards the generalization of vision-state
deep-learning Force Estimation in Minimally Invasive Robotic Surgery [6.55111164866752]
We present a new vision-haptic dataset (DaFoEs) with variable soft environments for the training of deep neural models.
We also present a variable encoder-decoder architecture to predict the forces done by the laparoscopic tool using single input or sequence of inputs.
arXiv Detail & Related papers (2024-01-17T14:39:55Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting [0.0]
Time series forecasting is a fundamental challenge in data science.
We develop a parallel deep learning framework composed of RNN and CNN.
Extensive experiments on three datasets reveal the effectiveness of our method.
arXiv Detail & Related papers (2023-05-08T17:20:13Z) - Scalable Scene Flow from Point Clouds in the Real World [30.437100097997245]
We introduce a new large scale benchmark for scene flow based on the Open dataset.
We show how previous works were bounded based on the amount of real LiDAR data available.
We introduce the model architecture FastFlow3D that provides real time inference on the full point cloud.
arXiv Detail & Related papers (2021-03-01T20:56:05Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.