A Fused Large Language Model for Predicting Startup Success
- URL: http://arxiv.org/abs/2409.03668v1
- Date: Thu, 5 Sep 2024 16:22:31 GMT
- Title: A Fused Large Language Model for Predicting Startup Success
- Authors: Abdurahman Maarouf, Stefan Feuerriegel, Nicolas Pröllochs,
- Abstract summary: We develop a machine learning approach with the aim of locating successful startups on venture capital platforms.
Specifically, we develop, train, and evaluate a tailored, fused large language model to predict startup success.
Using 20,172 online profiles from Crunchbase, we find that our fused large language model can predict startup success.
- Score: 21.75303916815358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Investors are continuously seeking profitable investment opportunities in startups and, hence, for effective decision-making, need to predict a startup's probability of success. Nowadays, investors can use not only various fundamental information about a startup (e.g., the age of the startup, the number of founders, and the business sector) but also textual description of a startup's innovation and business model, which is widely available through online venture capital (VC) platforms such as Crunchbase. To support the decision-making of investors, we develop a machine learning approach with the aim of locating successful startups on VC platforms. Specifically, we develop, train, and evaluate a tailored, fused large language model to predict startup success. Thereby, we assess to what extent self-descriptions on VC platforms are predictive of startup success. Using 20,172 online profiles from Crunchbase, we find that our fused large language model can predict startup success, with textual self-descriptions being responsible for a significant part of the predictive power. Our work provides a decision support tool for investors to find profitable investment opportunities.
Related papers
- OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models [61.14336781917986]
We introduce OpenR, an open-source framework for enhancing the reasoning capabilities of large language models (LLMs)
OpenR unifies data acquisition, reinforcement learning training, and non-autoregressive decoding into a cohesive software platform.
Our work is the first to provide an open-source framework that explores the core techniques of OpenAI's o1 model with reinforcement learning.
arXiv Detail & Related papers (2024-10-12T23:42:16Z) - Automating Venture Capital: Founder assessment using LLM-powered segmentation, feature engineering and automated labeling techniques [0.0]
This study explores the application of large language models (LLMs) in venture capital (VC) decision-making.
We utilize LLM prompting techniques, like chain-of-thought, to generate features from limited data, then extract insights through statistics and machine learning.
Our results reveal potential relationships between certain founder characteristics and success, as well as demonstrate the effectiveness of these characteristics in prediction.
arXiv Detail & Related papers (2024-07-05T22:54:13Z) - Startup success prediction and VC portfolio simulation using CrunchBase
data [1.7897779505837144]
This paper focuses on startups at their Series B and Series C investment stages, aiming to predict key success milestones.
We introduce novel deep learning model for predicting startup success, integrating a variety of factors such as funding metrics, founder features, industry category.
Our work demonstrates the considerable promise of deep learning models and alternative unstructured data in predicting startup success.
arXiv Detail & Related papers (2023-09-27T10:22:37Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
We propose an E2E that covers almost the entire process of factor investing through factor selection, factor combination, stock selection, and portfolio construction.
Experiments on real stock market data demonstrate the effectiveness of our end-to-end deep leaning framework in active investing.
arXiv Detail & Related papers (2023-05-25T10:27:07Z) - Using Deep Learning to Find the Next Unicorn: A Practical Synthesis [42.70427723009158]
Venture Capital (VC) strives to identify and invest in unicorn startups during their early stages, hoping to gain a high return.
Over the past two decades, the industry has gone through a paradigm shift moving from conventional statistical approaches towards becoming machine-learning based.
In this work, we carry out a literature review and synthesis on DL-based approaches, covering the entire DL life cycle.
arXiv Detail & Related papers (2022-10-18T13:11:16Z) - Solving the Data Sparsity Problem in Predicting the Success of the
Startups with Machine Learning Methods [2.939434965353219]
We investigate several machine learning algorithms with a large dataset from Crunchbase.
The results suggest that LightGBM and XGBoost perform best and achieve 53.03% and 52.96% F1 scores.
These findings have substantial implications on how machine learning methods can help startup companies and investors.
arXiv Detail & Related papers (2021-12-15T09:21:32Z) - Estimating Fund-Raising Performance for Start-up Projects from a Market
Graph Perspective [58.353799280109904]
We propose a Graph-based Market Environment (GME) model for predicting the fund-raising performance of the unpublished project by exploiting the market environment.
Specifically, we propose a Graph-based Market Environment (GME) model for predicting the fund-raising performance of the unpublished project by exploiting the market environment.
arXiv Detail & Related papers (2021-05-27T02:39:30Z) - Graph Neural Network Based VC Investment Success Prediction [11.527912247719915]
We design an incremental representation learning mechanism and a sequential learning model, utilizing the network structure together with the rich attributes of the nodes.
Our method achieves the state-of-the-art prediction performance on a comprehensive dataset of global venture capital investments.
It excels at predicting the outcomes for start-ups in industries such as healthcare and IT.
arXiv Detail & Related papers (2021-05-25T14:29:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.