論文の概要: Applications and Advances of Artificial Intelligence in Music Generation:A Review
- arxiv url: http://arxiv.org/abs/2409.03715v1
- Date: Tue, 3 Sep 2024 13:50:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:43:43.718185
- Title: Applications and Advances of Artificial Intelligence in Music Generation:A Review
- Title(参考訳): 音楽生成における人工知能の応用と進歩
- Authors: Yanxu Chen, Linshu Huang, Tian Gou,
- Abstract要約: 本稿では,AI音楽生成における最新の研究成果を体系的にレビューする。
主要な技術、モデル、データセット、評価方法、および様々な分野におけるそれらの実践的応用をカバーしている。
- 参考スコア(独自算出の注目度): 0.04551615447454769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, artificial intelligence (AI) has made significant progress in the field of music generation, driving innovation in music creation and applications. This paper provides a systematic review of the latest research advancements in AI music generation, covering key technologies, models, datasets, evaluation methods, and their practical applications across various fields. The main contributions of this review include: (1) presenting a comprehensive summary framework that systematically categorizes and compares different technological approaches, including symbolic generation, audio generation, and hybrid models, helping readers better understand the full spectrum of technologies in the field; (2) offering an extensive survey of current literature, covering emerging topics such as multimodal datasets and emotion expression evaluation, providing a broad reference for related research; (3) conducting a detailed analysis of the practical impact of AI music generation in various application domains, particularly in real-time interaction and interdisciplinary applications, offering new perspectives and insights; (4) summarizing the existing challenges and limitations of music quality evaluation methods and proposing potential future research directions, aiming to promote the standardization and broader adoption of evaluation techniques. Through these innovative summaries and analyses, this paper serves as a comprehensive reference tool for researchers and practitioners in AI music generation, while also outlining future directions for the field.
- Abstract(参考訳): 近年、人工知能(AI)は音楽生成の分野で大きな進歩を遂げ、音楽制作と応用の革新を推進している。
本稿では、AI音楽生成における最新の研究成果を体系的にレビューし、鍵となる技術、モデル、データセット、評価方法、および様々な分野におけるそれらの実践的応用について述べる。
本レビューの主な貢献は,(1)記号生成,音声生成,ハイブリッドモデルなど,さまざまな技術アプローチを体系的に分類し比較する総合的な要約フレームワークの提示,(2)分野における技術の全スペクトラムの理解の促進,(2)マルチモーダルデータセットや感情表現評価などの新興トピックの広範な調査,関連研究への広範な参照,(3)リアルタイムインタラクションや学際的応用におけるAI音楽生成の実践的影響の詳細な分析,(4)音楽品質評価手法の既存の課題と限界の要約,および将来的な研究方向性の提案,などである。
本稿では,これらの革新的な要約と分析を通じて,AI音楽生成における研究者や実践者の総合的参照ツールとして機能すると同時に,この分野の今後の方向性を概説する。
関連論文リスト
- Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
生成人工知能(AI)と大規模言語モデル(LLM)の出現は、自然言語処理(NLP)の新しい時代を象徴している。
本稿では,これらの最先端技術の現状を概観し,その顕著な進歩と広範囲な応用を実証する。
論文 参考訳(メタデータ) (2024-07-20T18:48:35Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - A Comprehensive Taxonomy and Analysis of Talking Head Synthesis: Techniques for Portrait Generation, Driving Mechanisms, and Editing [8.171572460041823]
トーキングヘッド合成は、特定のコンテンツによって駆動される静止画像からポートレートビデオを生成する高度な方法である。
本調査は,3つの重要な領域 – ポートレート生成,駆動機構,編集技術 – に分類し,その技術を体系的にレビューする。
論文 参考訳(メタデータ) (2024-06-15T08:14:59Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
本稿では、ジェネレーティブAIにおける最近の進歩と技術に関する体系的なレビューと分析について述べる。
生成AIがこれまで行った大きな影響は、大きな言語モデルの開発による言語生成である。
論文は、責任あるAIの原則と、これらの生成モデルの持続可能性と成長に必要な倫理的考察から締めくくられる。
論文 参考訳(メタデータ) (2024-05-17T18:03:59Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfakeは、特定の条件下で非常にリアルな顔画像やビデオを作成するための技術だ。
この調査は、ディープフェイクの発生と検出の最新の展開を包括的にレビューする。
本研究では, 顔交換, 顔再現, 話し顔生成, 顔属性編集の4つの代表的なディープフェイク分野の研究に焦点をあてる。
論文 参考訳(メタデータ) (2024-03-26T17:12:34Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - A Review of Intelligent Music Generation Systems [4.287960539882345]
ChatGPTは、クリエイティブな取り組みにおける非プロフェッショナルの参入障壁を著しく減らした。
現代の生成アルゴリズムは、規則制約や音楽コーパスに基づいて、音楽に暗黙的なパターンを抽出することができる。
論文 参考訳(メタデータ) (2022-11-16T13:43:16Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - A Systematic Literature Review about Idea Mining: The Use of
Machine-driven Analytics to Generate Ideas [0.0]
本研究では、アイデア生成とデータソースのための最先端の機械駆動分析に焦点を当てる。
IEEE、Scopus、Web of Science、Google Scholarから関連する学術文献を特定するために、体系的な文献レビューが行われる。
その結果,テキストマイニング,情報検索(IR),人工知能(AI),ディープラーニング,機械学習,統計技術,自然言語処理(NLP),NLPに基づく形態解析,ネットワーク分析,バイオロメトリなどを用いて,アイデア生成を支援することが示唆された。
論文 参考訳(メタデータ) (2022-01-30T21:46:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。