Confidential Computing Transparency
- URL: http://arxiv.org/abs/2409.03720v1
- Date: Thu, 5 Sep 2024 17:24:05 GMT
- Title: Confidential Computing Transparency
- Authors: Ceren Kocaoğullar, Tina Marjanov, Ivan Petrov, Ben Laurie, Al Cutter, Christoph Kern, Alice Hutchings, Alastair R. Beresford,
- Abstract summary: We propose a Confidential Computing Transparency framework with progressive levels of transparency.
This framework goes beyond current measures like open-source code and audits by incorporating accountability for reviewers.
Our tiered approach provides a practical pathway to achieving transparency in complex, real-world systems.
- Score: 7.9699781371465965
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Confidential Computing is a security paradigm designed to protect data in-use by leveraging hardware-based Trusted Execution Environments (TEEs). While TEEs offer significant security benefits, the need for user trust remains a challenge, as attestation alone cannot guarantee the absence of vulnerabilities or backdoors. To address this, we propose a Confidential Computing Transparency framework with progressive levels of transparency. This framework goes beyond current measures like open-source code and audits by incorporating accountability for reviewers and robust technical safeguards, creating a comprehensive trust chain. Our tiered approach provides a practical pathway to achieving transparency in complex, real-world systems. Through a user study with 400 participants, we demonstrate that higher levels of transparency are associated with increased user comfort, particularly for sensitive data types.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Blockchain-Enhanced Framework for Secure Third-Party Vendor Risk Management and Vigilant Security Controls [0.6990493129893112]
This paper proposes a comprehensive secure framework for managing third-party vendor risk.
It integrates blockchain technology to ensure transparency, traceability, and immutability in vendor assessments and interactions.
arXiv Detail & Related papers (2024-11-20T16:42:14Z) - Trustworthy AI: Securing Sensitive Data in Large Language Models [0.0]
Large Language Models (LLMs) have transformed natural language processing (NLP) by enabling robust text generation and understanding.
This paper proposes a comprehensive framework for embedding trust mechanisms into LLMs to dynamically control the disclosure of sensitive information.
arXiv Detail & Related papers (2024-09-26T19:02:33Z) - Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
We propose a novel framework of physical layer deception (PLD) to actively counteract wiretapping attempts.
PLD combines PLS with deception technologies to actively counteract wiretapping attempts.
We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches.
arXiv Detail & Related papers (2024-06-30T16:17:39Z) - Privacy-Preserving Deep Learning Using Deformable Operators for Secure Task Learning [14.187385349716518]
Existing methods for privacy preservation rely on image encryption or perceptual transformation approaches.
We propose a novel Privacy-Preserving framework that uses a set of deformable operators for secure task learning.
arXiv Detail & Related papers (2024-04-08T19:46:20Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Blockchain-based Zero Trust on the Edge [5.323279718522213]
This paper proposes a novel approach based on Zero Trust Architecture (ZTA) extended with blockchain to further enhance security.
The blockchain component serves as an immutable database for storing users' requests and is used to verify trustworthiness by analyzing and identifying potentially malicious user activities.
We discuss the framework, processes of the approach, and the experiments carried out on a testbed to validate its feasibility and applicability in the smart city context.
arXiv Detail & Related papers (2023-11-28T12:43:21Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Trustworthy Transparency by Design [57.67333075002697]
We propose a transparency framework for software design, incorporating research on user trust and experience.
Our framework enables developing software that incorporates transparency in its design.
arXiv Detail & Related papers (2021-03-19T12:34:01Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.