Halving the Cost of Quantum Algorithms with Randomization
- URL: http://arxiv.org/abs/2409.03744v3
- Date: Fri, 25 Oct 2024 18:41:21 GMT
- Title: Halving the Cost of Quantum Algorithms with Randomization
- Authors: John M. Martyn, Patrick Rall,
- Abstract summary: Quantum signal processing (QSP) provides a systematic framework for implementing a transformation of a linear operator.
Recent works have developed randomized compiling, a technique that promotes a unitary gate to a quantum channel.
Our algorithm implements a probabilistic mixture of randomizeds, strategically chosen so that the average evolution converges to that of a target function, with an error quadratically smaller than that of an equivalent individual.
- Score: 0.138120109831448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum signal processing (QSP) provides a systematic framework for implementing a polynomial transformation of a linear operator, and unifies nearly all known quantum algorithms. In parallel, recent works have developed randomized compiling, a technique that promotes a unitary gate to a quantum channel and enables a quadratic suppression of error (i.e., $\epsilon \rightarrow O(\epsilon^2)$) at little to no overhead. Here we integrate randomized compiling into QSP through Stochastic Quantum Signal Processing. Our algorithm implements a probabilistic mixture of polynomials, strategically chosen so that the average evolution converges to that of a target function, with an error quadratically smaller than that of an equivalent individual polynomial. Because nearly all QSP-based algorithms exhibit query complexities scaling as $O(\log(1/\epsilon))$ -- stemming from a result in functional analysis -- this error suppression reduces their query complexity by a factor that asymptotically approaches $1/2$. By the unifying capabilities of QSP, this reduction extends broadly to quantum algorithms, which we demonstrate on algorithms for real and imaginary time evolution, phase estimation, ground state preparation, and matrix inversion.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Accelerated Quantum Amplitude Estimation without QFT [0.0]
We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date.
The correctness of the algorithm and the $O(frac1varepsilon)$ bound on quantum computational complexity are supported by precise proofs.
arXiv Detail & Related papers (2024-07-23T18:49:11Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - Stochastic Quantum Sampling for Non-Logconcave Distributions and
Estimating Partition Functions [13.16814860487575]
We present quantum algorithms for sampling from nonlogconcave probability distributions.
$f$ can be written as a finite sum $f(x):= frac1Nsum_k=1N f_k(x)$.
arXiv Detail & Related papers (2023-10-17T17:55:32Z) - Generalized Quantum Signal Processing [0.6768558752130311]
We present a Generalized Quantum Signal Processing approach, employing general SU(2) rotations as our signal processing operators.
Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that $|P|leq 1$.
In cases where only $P$ is known, we provide an efficient GPU optimization capable of identifying in under a minute of time, a corresponding $Q$ for degree on the order of $107$.
arXiv Detail & Related papers (2023-08-03T01:51:52Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Variational learning algorithms for quantum query complexity [3.980076328494117]
We develop variational learning algorithms to study quantum query complexity.
We apply our method to analyze various cases of quantum query complexity.
Our method can be readily implemented on the near-term Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2022-05-16T05:16:15Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Efficient phase-factor evaluation in quantum signal processing [1.3614427997190908]
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrixs on quantum computers.
There is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations.
arXiv Detail & Related papers (2020-02-26T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.