DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation
- URL: http://arxiv.org/abs/2409.03755v1
- Date: Thu, 5 Sep 2024 17:59:46 GMT
- Title: DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation
- Authors: Wenliang Zhao, Haolin Wang, Jie Zhou, Jiwen Lu,
- Abstract summary: Diffusion models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling.
Recent predictor synthesis-or diffusion samplers have significantly reduced the required number of evaluations, but inherently suffer from a misalignment issue.
We introduce a new fast DPM sampler called DC-CPRr, which leverages dynamic compensation to mitigate the misalignment.
- Score: 68.55191764622525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024$\times$1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
Related papers
- Towards Fast Stochastic Sampling in Diffusion Generative Models [22.01769257075573]
Diffusion models suffer from slow sample generation at inference time.
We propose Splittings for fast sampling in pre-trained diffusion models in augmented spaces.
We show that a naive application of splitting is sub-optimal for fast sampling.
arXiv Detail & Related papers (2024-02-11T14:04:13Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model
Statistics [23.030972042695275]
Diffusion models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling.
Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs.
We propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error.
arXiv Detail & Related papers (2023-10-20T04:23:12Z) - Boosting Diffusion Models with an Adaptive Momentum Sampler [21.88226514633627]
We present a novel reverse sampler for DPMs inspired by the widely-used Adam sampler.
Our proposed sampler can be readily applied to a pre-trained diffusion model.
By implicitly reusing update directions from early steps, our proposed sampler achieves a better balance between high-level semantics and low-level details.
arXiv Detail & Related papers (2023-08-23T06:22:02Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Preconditioned Score-based Generative Models [49.88840603798831]
An intuitive acceleration method is to reduce the sampling iterations which however causes severe performance degradation.
We propose a model-agnostic bfem preconditioned diffusion sampling (PDS) method that leverages matrix preconditioning to alleviate the aforementioned problem.
PDS alters the sampling process of a vanilla SGM at marginal extra computation cost, and without model retraining.
arXiv Detail & Related papers (2023-02-13T16:30:53Z) - UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of
Diffusion Models [92.43617471204963]
Diffusion probabilistic models (DPMs) have demonstrated a very promising ability in high-resolution image synthesis.
We develop a unified corrector (UniC) that can be applied after any existing DPM sampler to increase the order of accuracy.
We propose a unified predictor-corrector framework called UniPC for the fast sampling of DPMs.
arXiv Detail & Related papers (2023-02-09T18:59:48Z) - DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling
in Around 10 Steps [45.612477740555406]
Diffusion probabilistic models (DPMs) are emerging powerful generative models.
DPM-r is suitable for both discrete-time and continuous-time DPMs without any further training.
We achieve 4.70 FID in 10 function evaluations and 2.87 FID in 20 function evaluations on the CIFAR10 dataset.
arXiv Detail & Related papers (2022-06-02T08:43:16Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.