Active Sampling of Interpolation Points to Identify Dominant Subspaces for Model Reduction
- URL: http://arxiv.org/abs/2409.03892v1
- Date: Thu, 5 Sep 2024 19:59:14 GMT
- Title: Active Sampling of Interpolation Points to Identify Dominant Subspaces for Model Reduction
- Authors: Celine Reddig, Pawan Goyal, Igor Pontes Duff, Peter Benner,
- Abstract summary: We investigate model reduction for linear structured systems using dominant reachable and observable subspaces.
When the training set $-$ containing all possible points $-$ is large, these subspaces can be determined by solving many large-scale linear systems.
We propose an active sampling strategy to sample only a few points from the given training set, which can allow us to estimate those subspaces accurately.
- Score: 7.818201674097184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model reduction is an active research field to construct low-dimensional surrogate models of high fidelity to accelerate engineering design cycles. In this work, we investigate model reduction for linear structured systems using dominant reachable and observable subspaces. When the training set $-$ containing all possible interpolation points $-$ is large, then these subspaces can be determined by solving many large-scale linear systems. However, for high-fidelity models, this easily becomes computationally intractable. To circumvent this issue, in this work, we propose an active sampling strategy to sample only a few points from the given training set, which can allow us to estimate those subspaces accurately. To this end, we formulate the identification of the subspaces as the solution of the generalized Sylvester equations, guiding us to select the most relevant samples from the training set to achieve our goals. Consequently, we construct solutions of the matrix equations in low-rank forms, which encode subspace information. We extensively discuss computational aspects and efficient usage of the low-rank factors in the process of obtaining reduced-order models. We illustrate the proposed active sampling scheme to obtain reduced-order models via dominant reachable and observable subspaces and present its comparison with the method where all the points from the training set are taken into account. It is shown that the active sample strategy can provide us $17$x speed-up without sacrificing any noticeable accuracy.
Related papers
- On Sampling Strategies for Spectral Model Sharding [7.185534285278903]
In this work, we present two sampling strategies for such sharding.
The first produces unbiased estimators of the original weights, while the second aims to minimize the squared approximation error.
We demonstrate that both of these methods can lead to improved performance on various commonly used datasets.
arXiv Detail & Related papers (2024-10-31T16:37:25Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
We study the problem of exploration in Reinforcement Learning and present a novel model-free solution.
Our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches.
arXiv Detail & Related papers (2024-06-30T19:00:49Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - K-band: Self-supervised MRI Reconstruction via Stochastic Gradient Descent over K-space Subsets [16.785465381844435]
We introduce a novel mathematical framework, dubbed k-band, that enables training DL models using only partial, limited-resolution k-space data.
In each training iteration, rather than using the fully sampled k-space for computing gradients, we use only a small k-space portion.
Numerical experiments with raw MRI data indicate that k-band outperforms two other methods trained on limited-resolution data.
arXiv Detail & Related papers (2023-08-05T22:07:37Z) - MILO: Model-Agnostic Subset Selection Framework for Efficient Model
Training and Tuning [68.12870241637636]
We propose MILO, a model-agnostic subset selection framework that decouples the subset selection from model training.
Our empirical results indicate that MILO can train models $3times - 10 times$ faster and tune hyperparameters $20times - 75 times$ faster than full-dataset training or tuning without performance.
arXiv Detail & Related papers (2023-01-30T20:59:30Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework.
The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields.
The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation.
arXiv Detail & Related papers (2021-08-14T15:13:35Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning.
In this paper, we investigate a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner.
We develop an algorithm tailored to this setting, achieving a sample complexity that scales practicallyly with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space.
arXiv Detail & Related papers (2021-05-17T17:22:07Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.