Large Margin Prototypical Network for Few-shot Relation Classification with Fine-grained Features
- URL: http://arxiv.org/abs/2409.04009v1
- Date: Fri, 6 Sep 2024 03:28:38 GMT
- Title: Large Margin Prototypical Network for Few-shot Relation Classification with Fine-grained Features
- Authors: Miao Fan, Yeqi Bai, Mingming Sun, Ping Li,
- Abstract summary: Relation classification (RC) plays a pivotal role in both natural language understanding and knowledge graph completion.
Conventional approaches on RC, regardless of feature engineering or deep learning based, can obtain promising performance on categorizing common types of relation.
In this paper, we consider few-shot learning is of great practical significance to RC and thus improve a modern framework of metric learning for few-shot RC.
- Score: 30.11073476165794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation classification (RC) plays a pivotal role in both natural language understanding and knowledge graph completion. It is generally formulated as a task to recognize the relationship between two entities of interest appearing in a free-text sentence. Conventional approaches on RC, regardless of feature engineering or deep learning based, can obtain promising performance on categorizing common types of relation leaving a large proportion of unrecognizable long-tail relations due to insufficient labeled instances for training. In this paper, we consider few-shot learning is of great practical significance to RC and thus improve a modern framework of metric learning for few-shot RC. Specifically, we adopt the large-margin ProtoNet with fine-grained features, expecting they can generalize well on long-tail relations. Extensive experiments were conducted by FewRel, a large-scale supervised few-shot RC dataset, to evaluate our framework: LM-ProtoNet (FGF). The results demonstrate that it can achieve substantial improvements over many baseline approaches.
Related papers
- Diversity Over Quantity: A Lesson From Few Shot Relation Classification [62.66895901654023]
We show that training on a diverse set of relations significantly enhances a model's ability to generalize to unseen relations.
We introduce REBEL-FS, a new FSRC benchmark that incorporates an order of magnitude more relation types than existing datasets.
arXiv Detail & Related papers (2024-12-06T21:41:01Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
Relation Extraction (RE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs)
Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area.
This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach.
arXiv Detail & Related papers (2024-06-20T21:27:57Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
We propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL)
Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible.
Extensive experiments on a couple of publicly accessible datasets demonstrate that SGFSIS can outperform other annotation-efficient learning baselines.
arXiv Detail & Related papers (2024-02-26T03:49:18Z) - SARF: Aliasing Relation Assisted Self-Supervised Learning for Few-shot
Relation Reasoning [43.59319243928048]
Few-shot relation reasoning on knowledge graphs (FS-KGR) aims to infer long-tail data-poor relations.
We propose a novel Self-Supervised Learning model by leveraging Aliasing Relations to assist FS-KGR, termed SARF.
arXiv Detail & Related papers (2023-04-20T13:24:59Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
This paper presents an empirical study to build relation extraction systems in low-resource settings.
We investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; and (iii) data augmentation technologies and self-training to generate more labeled in-domain data.
arXiv Detail & Related papers (2022-10-19T15:46:37Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
We propose a general approach to learn relation prototypes from unlabeled texts.
We learn relation prototypes as an implicit factor between entities.
We conduct experiments on two publicly available datasets: New York Times and Google Distant Supervision.
arXiv Detail & Related papers (2020-11-27T06:21:12Z) - RH-Net: Improving Neural Relation Extraction via Reinforcement Learning
and Hierarchical Relational Searching [2.1828601975620257]
We propose a novel framework named RH-Net, which utilizes Reinforcement learning and Hierarchical relational searching module to improve relation extraction.
We then propose the hierarchical relational searching module to share the semantics from correlative instances between data-rich and data-poor classes.
arXiv Detail & Related papers (2020-10-27T12:50:27Z) - Memory-Augmented Relation Network for Few-Shot Learning [114.47866281436829]
In this work, we investigate a new metric-learning method, Memory-Augmented Relation Network (MRN)
In MRN, we choose the samples that are visually similar from the working context, and perform weighted information propagation to attentively aggregate helpful information from chosen ones to enhance its representation.
We empirically demonstrate that MRN yields significant improvement over its ancestor and achieves competitive or even better performance when compared with other few-shot learning approaches.
arXiv Detail & Related papers (2020-05-09T10:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.