Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision
- URL: http://arxiv.org/abs/2409.04011v1
- Date: Fri, 6 Sep 2024 03:34:44 GMT
- Title: Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision
- Authors: Weijie He, Mushui Liu, Yunlong Yu, Zheming Lu, Xi Li,
- Abstract summary: Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets.
We introduce a Hybrid Mask Generation approach that recovers high-quality masks for each target from only a single-point label for network training.
Experimental results across three datasets demonstrate that our method outperforms the existing methods for infrared small target detection with single-point supervision.
- Score: 18.168923054036682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets amidst complex infrared background clutter. Recently, deep learning approaches have shown promising results in this domain. However, these methods heavily rely on extensive manual annotations, which are particularly cumbersome and resource-intensive for infrared small targets owing to their minute sizes. To address this limitation, we introduce a Hybrid Mask Generation (HMG) approach that recovers high-quality masks for each target from only a single-point label for network training. Specifically, our HMG approach consists of a handcrafted Points-to-Mask Generation strategy coupled with a pseudo mask updating strategy to recover and refine pseudo masks from point labels. The Points-to-Mask Generation strategy divides two distinct stages: Points-to-Box conversion, where individual point labels are transformed into bounding boxes, and subsequently, Box-to-Mask prediction, where these bounding boxes are elaborated into precise masks. The mask updating strategy integrates the complementary strengths of handcrafted and deep-learning algorithms to iteratively refine the initial pseudo masks. Experimental results across three datasets demonstrate that our method outperforms the existing methods for infrared small target detection with single-point supervision.
Related papers
- YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO [0.18641315013048293]
This paper proposes a deep-learning infrared small target detection method that combines image super-resolution technology with multi-scale observation.
The mAP@0.5 detection rates of this method on two public datasets, SIRST and IRIS, reached 96.4% and 99.5% respectively.
arXiv Detail & Related papers (2024-12-27T18:43:56Z) - Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - Triple Point Masking [49.39218611030084]
Existing 3D mask learning methods encounter performance bottlenecks under limited data.
We introduce a triple point masking scheme, named TPM, which serves as a scalable framework for pre-training of masked autoencoders.
Extensive experiments show that the four baselines equipped with the proposed TPM achieve comprehensive performance improvements on various downstream tasks.
arXiv Detail & Related papers (2024-09-26T05:33:30Z) - Pluralistic Salient Object Detection [108.74650817891984]
We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image.
We present two new SOD datasets "DUTS-MM" and "DUS-MQ", along with newly designed evaluation metrics.
arXiv Detail & Related papers (2024-09-04T01:38:37Z) - ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing.
We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs.
Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
arXiv Detail & Related papers (2023-12-22T02:31:31Z) - A transfer learning approach with convolutional neural network for Face
Mask Detection [0.30693357740321775]
We propose a mask recognition system based on transfer learning and Inception v3 architecture.
In addition to masked and unmasked faces, it can also detect cases of incorrect use of mask.
arXiv Detail & Related papers (2023-10-29T07:38:33Z) - Flow-Attention-based Spatio-Temporal Aggregation Network for 3D Mask
Detection [12.160085404239446]
We propose a novel 3D mask detection framework called FASTEN.
We tailor the network for focusing more on fine details in large movements, which can eliminate redundant-temporal feature interference.
FASTEN only requires five frames input and outperforms eight competitors for both intra-dataset and cross-dataset evaluations.
arXiv Detail & Related papers (2023-10-25T11:54:21Z) - Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation [29.43462426812185]
We propose a paradigm change by shifting from a per-pixel classification to a mask classification.
Our mask-based method, Mask2Anomaly, demonstrates the feasibility of integrating a mask-classification architecture.
By comprehensive qualitative and qualitative evaluation, we show Mask2Anomaly achieves new state-of-the-art results.
arXiv Detail & Related papers (2023-09-08T20:07:18Z) - Unmasking Anomalies in Road-Scene Segmentation [18.253109627901566]
Anomaly segmentation is a critical task for driving applications.
We propose a paradigm change by shifting from a per-pixel classification to a mask classification.
Mask2Anomaly demonstrates the feasibility of integrating an anomaly detection method in a mask-classification architecture.
arXiv Detail & Related papers (2023-07-25T08:23:10Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Monte Carlo Linear Clustering with Single-Point Supervision is Enough
for Infrared Small Target Detection [48.707233614642796]
Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds on infrared images.
Deep learning based methods have achieved promising performance on SIRST detection, but at the cost of a large amount of training data.
We propose the first method to achieve SIRST detection with single-point supervision.
arXiv Detail & Related papers (2023-04-10T08:04:05Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Mask or Non-Mask? Robust Face Mask Detector via Triplet-Consistency
Representation Learning [23.062034116854875]
In the absence of vaccines or medicines to stop COVID-19, one of the effective methods to slow the spread of the coronavirus is to wear a face mask.
To mandate the use of face masks or coverings in public areas, additional human resources are required, which is tedious and attention-intensive.
We propose a face mask detection framework that uses the context attention module to enable the effective attention of the feed-forward convolution neural network.
arXiv Detail & Related papers (2021-10-01T16:44:06Z) - Image Inpainting by End-to-End Cascaded Refinement with Mask Awareness [66.55719330810547]
Inpainting arbitrary missing regions is challenging because learning valid features for various masked regions is nontrivial.
We propose a novel mask-aware inpainting solution that learns multi-scale features for missing regions in the encoding phase.
Our framework is validated both quantitatively and qualitatively via extensive experiments on three public datasets.
arXiv Detail & Related papers (2021-04-28T13:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.