Efficient Fault-Tolerant Quantum Protocol for Differential Privacy in the Shuffle Model
- URL: http://arxiv.org/abs/2409.04026v1
- Date: Fri, 6 Sep 2024 04:53:19 GMT
- Title: Efficient Fault-Tolerant Quantum Protocol for Differential Privacy in the Shuffle Model
- Authors: Hassan Jameel Asghar, Arghya Mukherjee, Gavin K. Brennen,
- Abstract summary: We present a quantum protocol which implicitly implements a random shuffle to realize differential privacy in the shuffle model.
The shuffle model amplifies outcomes achievable from data contributors.
Examples include implementing the shuffle via mix-networks, or shuffling via a trusted third-party.
We propose a quantum version of the protocol using entanglement of quantum states and show that the shuffle can be implemented without these extra requirements.
- Score: 2.0794380287086214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a quantum protocol which securely and implicitly implements a random shuffle to realize differential privacy in the shuffle model. The shuffle model of differential privacy amplifies privacy achievable via local differential privacy by randomly permuting the tuple of outcomes from data contributors. In practice, one needs to address how this shuffle is implemented. Examples include implementing the shuffle via mix-networks, or shuffling via a trusted third-party. These implementation specific issues raise non-trivial computational and trust requirements in a classical system. We propose a quantum version of the protocol using entanglement of quantum states and show that the shuffle can be implemented without these extra requirements. Our protocol implements k-ary randomized response, for any value of k > 2, and furthermore, can be efficiently implemented using fault-tolerant computation.
Related papers
- Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling [21.031062710893867]
This paper introduces a novel paradigm termed Private Individual Computation (PIC)
PIC enables personalized outputs while preserving privacy, and enjoys privacy amplification through shuffling.
We present an optimal randomizer, the Minkowski Response, designed for the PIC model to enhance utility.
arXiv Detail & Related papers (2024-06-26T07:53:48Z) - Differentially Private Aggregation via Imperfect Shuffling [64.19885806149958]
We introduce the imperfect shuffle differential privacy model, where messages are shuffled in an almost uniform manner before being observed by a curator for private aggregation.
We show that surprisingly, there is no additional error overhead necessary in the imperfect shuffle model.
arXiv Detail & Related papers (2023-08-28T17:34:52Z) - Privacy Amplification via Shuffling: Unified, Simplified, and Tightened [20.10078781197001]
We propose a comprehensive framework for privacy amplification in both single-message and multi-message shuffle protocols.
Our theoretical results demonstrate that our framework provides tighter bounds, especially for local randomizers with extremal probability design.
Our bounds also result in a remarkably efficient $tildeO(n)$ algorithm that numerically amplifies privacy in less than $10$ seconds for $n=108$ users.
arXiv Detail & Related papers (2023-04-11T06:27:25Z) - Concurrent Shuffle Differential Privacy Under Continual Observation [60.127179363119936]
We study the private continual summation problem (a.k.a. the counter problem)
We show that the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffle model.
arXiv Detail & Related papers (2023-01-29T20:42:54Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Shuffle Private Stochastic Convex Optimization [20.379311972125034]
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler.
The shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy.
We present interactive shuffle protocols for convex optimization.
arXiv Detail & Related papers (2021-06-17T20:44:00Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Improved device-independent randomness expansion rates using two sided
randomness [3.4376560669160394]
A device-independent randomness expansion protocol aims to take an initial random string and generate a longer one.
We investigate the possible improvement that could be gained using the two-sided randomness.
We also consider a modified protocol in which the input randomness is recycled.
arXiv Detail & Related papers (2021-03-12T19:49:17Z) - Coherent randomized benchmarking [68.8204255655161]
We show that superpositions of different random sequences rather than independent samples are used.
We show that this leads to a uniform and simple protocol with significant advantages with respect to gates that can be benchmarked.
arXiv Detail & Related papers (2020-10-26T18:00:34Z) - On the Round Complexity of the Shuffle Model [25.454520433661646]
The shuffle model of differential privacy was proposed as a viable model for performing distributed differentially private computations.
We show how two parties can use one round of the shuffle to send secret messages without having to first establish a secret key.
We examine differentially private computations in the shuffle model that do not require the assumption of an honest majority.
arXiv Detail & Related papers (2020-09-28T17:57:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.