PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation
- URL: http://arxiv.org/abs/2409.04038v1
- Date: Fri, 6 Sep 2024 06:11:28 GMT
- Title: PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation
- Authors: Tianqi Wei, Zhi Chen, Xin Yu, Scott Chapman, Paul Melloy, Zi Huang,
- Abstract summary: Plant disease datasets typically lack segmentation labels.
Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images.
PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type.
- Score: 37.383095056084834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Plant diseases pose significant threats to agriculture. It necessitates proper diagnosis and effective treatment to safeguard crop yields. To automate the diagnosis process, image segmentation is usually adopted for precisely identifying diseased regions, thereby advancing precision agriculture. Developing robust image segmentation models for plant diseases demands high-quality annotations across numerous images. However, existing plant disease datasets typically lack segmentation labels and are often confined to controlled laboratory settings, which do not adequately reflect the complexity of natural environments. Motivated by this fact, we established PlantSeg, a large-scale segmentation dataset for plant diseases. PlantSeg distinguishes itself from existing datasets in three key aspects. (1) Annotation type: Unlike the majority of existing datasets that only contain class labels or bounding boxes, each image in PlantSeg includes detailed and high-quality segmentation masks, associated with plant types and disease names. (2) Image source: Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images. This choice enhances the practical applicability, as the trained models can be applied for integrated disease management. (3) Scale: PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type. Extensive technical experiments validate the high quality of PlantSeg's annotations. This dataset not only allows researchers to evaluate their image classification methods but also provides a critical foundation for developing and benchmarking advanced plant disease segmentation algorithms.
Related papers
- Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
This study proposes an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM)
The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy.
Our code and dataset will be publicly available to advance research in plant pest and disease recognition.
arXiv Detail & Related papers (2024-07-20T15:48:35Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - High-Quality Entity Segmentation [110.55724145851725]
CropFormer is designed to tackle the intractability of instance-level segmentation on high-resolution images.
It improves mask prediction by fusing high-res image crops that provide more fine-grained image details and the full image.
With CropFormer, we achieve a significant AP gain of $1.9$ on the challenging entity segmentation task.
arXiv Detail & Related papers (2022-11-10T18:58:22Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Leaf Image-based Plant Disease Identification using Color and Texture
Features [0.1657441317977376]
The accuracy on a self-collected dataset is 82.47% for disease identification and 91.40% for healthy and diseased classification.
This prototype system can be extended by adding more disease categories or targeting specific crop or disease categories.
arXiv Detail & Related papers (2021-02-08T20:32:56Z) - Chaotic-to-Fine Clustering for Unlabeled Plant Disease Images [14.22068250199567]
Current annotation for plant disease images depends on manual sorting and handcrafted features by agricultural experts.
We propose a self-supervised clustering framework for grouping plant disease images based on the vulnerability of Kernel K-means.
arXiv Detail & Related papers (2021-01-18T00:44:12Z) - A Multi-Plant Disease Diagnosis Method using Convolutional Neural
Network [0.0]
This chapter investigates an optimal plant disease identification model combining the diagnosis of multiple plants.
We implement numerous popular convolutional neural network (CNN) architectures.
The experimental results validate that the Xception and DenseNet architectures perform better in multi-label plant disease classification tasks.
arXiv Detail & Related papers (2020-11-10T15:18:52Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
This work presents the first large-scale pollen grain image dataset, including more than 13 thousands objects.
The paper focuses on the employed data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, segmentation and labelling.
arXiv Detail & Related papers (2020-07-09T10:33:31Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.