Chaotic-to-Fine Clustering for Unlabeled Plant Disease Images
- URL: http://arxiv.org/abs/2101.06820v1
- Date: Mon, 18 Jan 2021 00:44:12 GMT
- Title: Chaotic-to-Fine Clustering for Unlabeled Plant Disease Images
- Authors: Uno Fang, Jianxin Li, Xuequan Lu, Mumtaz Ali, Longxiang Gao and Yong
Xiang
- Abstract summary: Current annotation for plant disease images depends on manual sorting and handcrafted features by agricultural experts.
We propose a self-supervised clustering framework for grouping plant disease images based on the vulnerability of Kernel K-means.
- Score: 14.22068250199567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current annotation for plant disease images depends on manual sorting and
handcrafted features by agricultural experts, which is time-consuming and
labour-intensive. In this paper, we propose a self-supervised clustering
framework for grouping plant disease images based on the vulnerability of
Kernel K-means. The main idea is to establish a cross iterative
under-clustering algorithm based on Kernel K-means to produce the
pseudo-labeled training set and a chaotic cluster to be further classified by a
deep learning module. In order to verify the effectiveness of our proposed
framework, we conduct extensive experiments on three different plant disease
datatsets with five plants and 17 plant diseases. The experimental results show
the high superiority of our method to do image-based plant disease
classification over balanced and unbalanced datasets by comparing with five
state-of-the-art existing works in terms of different metrics.
Related papers
- PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation [37.383095056084834]
Plant disease datasets typically lack segmentation labels.
Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images.
PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type.
arXiv Detail & Related papers (2024-09-06T06:11:28Z) - Federated unsupervised random forest for privacy-preserving patient
stratification [0.4499833362998487]
We introduce a novel multi-omics clustering approach utilizing unsupervised random-forests.
We have validated our approach on machine learning benchmark data sets and on cancer data from The Cancer Genome Atlas.
Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability.
arXiv Detail & Related papers (2024-01-29T12:04:14Z) - Evaluating Data Augmentation Techniques for Coffee Leaf Disease
Classification [2.0892083471064407]
This paper uses the RoCoLe dataset and approaches based on deep learning for classifying coffee leaf diseases from images.
Our study demonstrates the effectiveness of Transformer-based models, online augmentations, and CycleGAN augmentation in improving leaf disease classification.
arXiv Detail & Related papers (2024-01-11T09:22:36Z) - Prompt-based Grouping Transformer for Nucleus Detection and
Classification [70.55961378096116]
nuclei detection and classification can produce effective information for disease diagnosis.
Most existing methods classify nuclei independently or do not make full use of the semantic similarity between nuclei and their grouping features.
We propose a novel end-to-end nuclei detection and classification framework based on a grouping transformer-based classifier.
arXiv Detail & Related papers (2023-10-22T04:50:48Z) - Aphid Cluster Recognition and Detection in the Wild Using Deep Learning
Models [17.65292847038642]
Aphid infestation poses a significant threat to crop production, rural communities, and global food security.
This paper primarily focuses on using deep learning models for detecting aphid clusters.
We propose a novel approach for estimating infection levels by detecting aphid clusters.
arXiv Detail & Related papers (2023-08-10T23:53:07Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Image-based Plant Disease Diagnosis with Unsupervised Anomaly Detection
Based on Reconstructability of Colors [0.0]
We propose an unsupervised anomaly detection technique for image-based plant disease diagnosis.
Our proposed method includes a new image-based framework for plant disease detection that utilizes a conditional adversarial network called pix2pix.
Experiments with PlantVillage dataset demonstrated the superiority of our proposed method compared to an existing anomaly detector.
arXiv Detail & Related papers (2020-11-29T07:44:05Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.