論文の概要: Active-Passive Federated Learning for Vertically Partitioned Multi-view Data
- arxiv url: http://arxiv.org/abs/2409.04111v1
- Date: Fri, 6 Sep 2024 08:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:25:56.270606
- Title: Active-Passive Federated Learning for Vertically Partitioned Multi-view Data
- Title(参考訳): 垂直分割型多視点データに対するアクティブ・パッシブ・フェデレーション学習
- Authors: Jiyuan Liu, Xinwang Liu, Siqi Wang, Xingchen Hu, Qing Liao, Xinhang Wan, Yi Zhang, Xin Lv, Kunlun He,
- Abstract要約: フレキシブルなアクティブ・パッシブ・フェデレーション・ラーニング(APFed)フレームワークを提案する。
アクティブクライアントは学習タスクの開始者であり、完全なモデルを構築する責任を持ち、受動的クライアントはアシスタントとしてのみ機能する。
さらに、APFedフレームワークを2つの分類方法に分類し、それぞれに再構成損失とパッシブクライアントに対するコントラスト損失を利用する。
- 参考スコア(独自算出の注目度): 48.985955382701185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertical federated learning is a natural and elegant approach to integrate multi-view data vertically partitioned across devices (clients) while preserving their privacies. Apart from the model training, existing methods requires the collaboration of all clients in the model inference. However, the model inference is probably maintained for service in a long time, while the collaboration, especially when the clients belong to different organizations, is unpredictable in real-world scenarios, such as concellation of contract, network unavailablity, etc., resulting in the failure of them. To address this issue, we, at the first attempt, propose a flexible Active-Passive Federated learning (APFed) framework. Specifically, the active client is the initiator of a learning task and responsible to build the complete model, while the passive clients only serve as assistants. Once the model built, the active client can make inference independently. In addition, we instance the APFed framework into two classification methods with employing the reconstruction loss and the contrastive loss on passive clients, respectively. Meanwhile, the two methods are tested in a set of experiments and achieves desired results, validating their effectiveness.
- Abstract(参考訳): 垂直的フェデレーション学習(Vertical Federated Learning)は、デバイス(クライアント)間で垂直に分割されたマルチビューデータを統合するための、自然でエレガントなアプローチである。
モデルトレーニングとは別に、既存のメソッドはモデル推論におけるすべてのクライアントの協調を必要とします。
しかし、モデル推論は長くサービスとして維持され、特にクライアントが異なる組織に属している場合、契約の完全性やネットワークの不安定性といった現実のシナリオでは予測不可能であり、結果としてそれらが失敗する。
この問題に対処するため、私たちはまず、フレキシブルなアクティブ・パッシブ・フェデレーション・ラーニング(APFed)フレームワークを提案します。
具体的には、アクティブクライアントは学習タスクの開始者であり、完全なモデルを構築する責任を持ち、受動的クライアントはアシスタントとしてのみ機能する。
モデルが構築されると、アクティブクライアントは独立して推論を行うことができる。
さらに、APFedフレームワークを2つの分類方法に分類し、それぞれに再構成損失とパッシブクライアントに対するコントラスト損失を利用する。
一方、2つの手法は一連の実験でテストされ、望ましい結果が得られ、有効性を検証する。
関連論文リスト
- Personalized Federated Learning via Sequential Layer Expansion in Representation Learning [0.0]
フェデレーション学習は、個々のクライアントデバイス上で分散トレーニングを行い、中央サーバでモデルウェイトのみを共有することによって、クライアントのプライバシを保証する。
本稿では,ディープラーニングモデル全体をより密に分割した部分に分割し,適切なスケジューリング手法を適用した表現学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-27T06:37:19Z) - Scalable Federated Unlearning via Isolated and Coded Sharding [76.12847512410767]
フェデレートされたアンラーニングは、クライアントレベルのデータエフェクトを削除するための有望なパラダイムとして登場した。
本稿では,分散シャーディングと符号化コンピューティングに基づく,スケーラブルなフェデレーション・アンラーニング・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T08:41:45Z) - Cross-Silo Federated Learning Across Divergent Domains with Iterative Parameter Alignment [4.95475852994362]
フェデレートラーニング(Federated Learning)は、リモートクライアント間で機械学習モデルをトレーニングする手法である。
我々は、共通の目的のために最適化されたNモデルを学ぶために、典型的な連合学習環境を再構築する。
この技術は、最先端のアプローチと比較して、様々なデータパーティションにおける競合的な結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-11-08T16:42:14Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Cross-domain Federated Object Detection [43.66352018668227]
フェデレーション学習は、クライアントデータをリークすることなく、多人数の共同学習を可能にする。
我々はFedODというドメイン間フェデレーションオブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-30T03:09:59Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
フェデレーション学習(Federated Learning)は、AI依存のIoTアプリケーションをデプロイするために使用できる分散機械学習手法である。
本稿では,協調学習とGANに基づく連合学習手法を提案する。
提案手法は,クライアントのモデルアーキテクチャとデータ分布が大きく異なる場合,既存手法の精度を平均42%向上させる。
論文 参考訳(メタデータ) (2022-02-18T12:08:46Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML)は、クライアントが汎用モデルとパーソナライズされたモデルを独立してトレーニングすることを可能にする。
実験により、FMLは一般的なフェデレート学習環境よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-27T09:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。