A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction
- URL: http://arxiv.org/abs/2409.04150v1
- Date: Fri, 6 Sep 2024 09:26:45 GMT
- Title: A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction
- Authors: Xiangke Zeng, Zuchao Li, Lefei Zhang, Ping Wang, Hongqiu Wu, Hai Zhao,
- Abstract summary: Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task.
We introduce a novel approach based on error detector-corrector framework.
Our detector is designed to yield two error detection results, each characterized by high precision and recall.
- Score: 79.52464132360618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task, which primarily focuses on the correction of erroneous characters in Chinese texts. Certain existing methodologies opt to disentangle the error correction process, employing an additional error detector to pinpoint error positions. However, owing to the inherent performance limitations of error detector, precision and recall are like two sides of the coin which can not be both facing up simultaneously. Furthermore, it is also worth investigating how the error position information can be judiciously applied to assist the error correction. In this paper, we introduce a novel approach based on error detector-corrector framework. Our detector is designed to yield two error detection results, each characterized by high precision and recall. Given that the occurrence of errors is context-dependent and detection outcomes may be less precise, we incorporate the error detection results into the CSC task using an innovative feature fusion strategy and a selective masking strategy. Empirical experiments conducted on mainstream CSC datasets substantiate the efficacy of our proposed method.
Related papers
- LM-Combiner: A Contextual Rewriting Model for Chinese Grammatical Error Correction [49.0746090186582]
Over-correction is a critical problem in Chinese grammatical error correction (CGEC) task.
Recent work using model ensemble methods can effectively mitigate over-correction and improve the precision of the GEC system.
We propose the LM-Combiner, a rewriting model that can directly modify the over-correction of GEC system outputs without a model ensemble.
arXiv Detail & Related papers (2024-03-26T06:12:21Z) - Chinese Spelling Correction as Rephrasing Language Model [63.65217759957206]
We study Chinese Spelling Correction (CSC), which aims to detect and correct the potential spelling errors in a given sentence.
Current state-of-the-art methods regard CSC as a sequence tagging task and fine-tune BERT-based models on sentence pairs.
We propose Rephrasing Language Model (ReLM), where the model is trained to rephrase the entire sentence by infilling additional slots, instead of character-to-character tagging.
arXiv Detail & Related papers (2023-08-17T06:04:28Z) - An Error-Guided Correction Model for Chinese Spelling Error Correction [13.56600372085612]
We propose an error-guided correction model (EGCM) to improve Chinese spelling correction.
Our model achieves superior performance against state-of-the-art approaches by a remarkable margin.
arXiv Detail & Related papers (2023-01-16T09:27:45Z) - SoftCorrect: Error Correction with Soft Detection for Automatic Speech
Recognition [116.31926128970585]
We propose SoftCorrect with a soft error detection mechanism to avoid the limitations of both explicit and implicit error detection.
Compared with implicit error detection with CTC loss, SoftCorrect provides explicit signal about which words are incorrect.
Experiments on AISHELL-1 and Aidatatang datasets show that SoftCorrect achieves 26.1% and 9.4% CER reduction respectively.
arXiv Detail & Related papers (2022-12-02T09:11:32Z) - Improving Distinction between ASR Errors and Speech Disfluencies with
Feature Space Interpolation [0.0]
Fine-tuning pretrained language models (LMs) is a popular approach to automatic speech recognition (ASR) error detection during post-processing.
This paper proposes a scheme to improve existing LM-based ASR error detection systems.
arXiv Detail & Related papers (2021-08-04T02:11:37Z) - Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese
Grammatical Error Correction [49.25830718574892]
We present a new framework named Tail-to-Tail (textbfTtT) non-autoregressive sequence prediction.
Considering that most tokens are correct and can be conveyed directly from source to target, and the error positions can be estimated and corrected.
Experimental results on standard datasets, especially on the variable-length datasets, demonstrate the effectiveness of TtT in terms of sentence-level Accuracy, Precision, Recall, and F1-Measure.
arXiv Detail & Related papers (2021-06-03T05:56:57Z) - Improving the Efficiency of Grammatical Error Correction with Erroneous
Span Detection and Correction [106.63733511672721]
We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection ( ESD) and Erroneous Span Correction (ESC)
ESD identifies grammatically incorrect text spans with an efficient sequence tagging model. ESC leverages a seq2seq model to take the sentence with annotated erroneous spans as input and only outputs the corrected text for these spans.
Experiments show our approach performs comparably to conventional seq2seq approaches in both English and Chinese GEC benchmarks with less than 50% time cost for inference.
arXiv Detail & Related papers (2020-10-07T08:29:11Z) - Spelling Error Correction with Soft-Masked BERT [11.122964733563117]
A state-of-the-art method for the task selects a character from a list of candidates for correction at each position of the sentence on the basis of BERT.
The accuracy of the method can be sub-optimal because BERT does not have sufficient capability to detect whether there is an error at each position.
We propose a novel neural architecture to address the aforementioned issue, which consists of a network for error detection and a network for error correction based on BERT.
arXiv Detail & Related papers (2020-05-15T09:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.