From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks
- URL: http://arxiv.org/abs/2409.04168v1
- Date: Fri, 6 Sep 2024 10:09:41 GMT
- Title: From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks
- Authors: Andreas Stephan, Dawei Zhu, Matthias Aßenmacher, Xiaoyu Shen, Benjamin Roth,
- Abstract summary: We study large language models (LLMs) on mathematical reasoning tasks.
Our analysis uncovers a strong correlation between judgment performance and the candidate model task performance.
We show that it is possible to use statistics, such as the task performances of the individual models, to predict judgment performance.
- Score: 11.01213914485374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To reduce the need for human annotations, large language models (LLMs) have been proposed as judges of the quality of other candidate models. LLM judges are typically evaluated by measuring the correlation with human judgments on generation tasks such as summarization or machine translation. In contrast, we study LLM judges on mathematical reasoning tasks. These tasks require multi-step reasoning, and the correctness of their solutions is verifiable, enabling a more objective evaluation. We perform a detailed performance analysis and find that the used judges are mostly unable to improve task performance but are able to pick the better model. Our analysis uncovers a strong correlation between judgment performance and the candidate model task performance. We observe that judges tend to choose the model of higher quality even if its answer is incorrect. Further, we show that it is possible to use statistics, such as the task performances of the individual models, to predict judgment performance. In an ablation, we either swap or mask the candidate answers and observe that judges often keep the original judgment, providing evidence that judges incorporate writing style in their judgments. In summary, we find that regularities in the judgments are quantifiable using statistical measures and provide various angles on exploiting them.
Related papers
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
JudgeBench is a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding.
Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks.
arXiv Detail & Related papers (2024-10-16T17:58:19Z) - On scalable oversight with weak LLMs judging strong LLMs [67.8628575615614]
We study debate, where two AI's compete to convince a judge; consultancy, where a single AI tries to convince a judge that asks questions.
We use large language models (LLMs) as both AI agents and as stand-ins for human judges, taking the judge models to be weaker than agent models.
arXiv Detail & Related papers (2024-07-05T16:29:15Z) - Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges [6.609843448260634]
The LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models.
This paper focuses on a clean scenario in which inter-human agreement is high.
We identify vulnerabilities in judge models, such as their sensitivity to prompt complexity and length, and a tendency toward leniency.
arXiv Detail & Related papers (2024-06-18T13:49:54Z) - Aligning Large Language Models by On-Policy Self-Judgment [49.31895979525054]
Existing approaches for aligning large language models with human preferences face a trade-off that requires a separate reward model (RM) for on-policy learning.
We present a novel alignment framework, SELF-JUDGE, that does on-policy learning and is parameter efficient.
We show that the rejecting sampling by itself can improve performance further without an additional evaluator.
arXiv Detail & Related papers (2024-02-17T11:25:26Z) - JudgeLM: Fine-tuned Large Language Models are Scalable Judges [54.007823006976516]
We propose to fine-tune Large Language Models (LLMs) as scalable judges (JudgeLM) to evaluate LLMs efficiently and effectively in open-ended benchmarks.
We first propose a comprehensive, large-scale, high-quality dataset containing task seeds, LLMs-generated answers, and GPT-4-generated judgments for fine-tuning high-performance judges.
We then analyze the key biases in fine-tuning LLM as a judge and consider them as position bias, knowledge bias, and format bias.
arXiv Detail & Related papers (2023-10-26T17:48:58Z) - Perspectives on Large Language Models for Relevance Judgment [56.935731584323996]
Large language models (LLMs) claim that they can assist with relevance judgments.
It is not clear whether automated judgments can reliably be used in evaluations of retrieval systems.
arXiv Detail & Related papers (2023-04-13T13:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.