Verdict: A Library for Scaling Judge-Time Compute
- URL: http://arxiv.org/abs/2502.18018v1
- Date: Tue, 25 Feb 2025 09:26:44 GMT
- Title: Verdict: A Library for Scaling Judge-Time Compute
- Authors: Nimit Kalra, Leonard Tang,
- Abstract summary: Verdict is a library for scaling judge-time compute to enhance the accuracy, reliability, and interpretability of automated evaluators.<n>Verdict judges achieve state-of-the-art (SOTA) or near-SOTA performance, surpassing orders-of-magnitude larger fine-tuned judges.
- Score: 4.962699700524792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of LLMs as automated judges ("LLM-as-a-judge") is now widespread, yet standard judges suffer from a multitude of reliability issues. To address these challenges, we introduce Verdict, an open-source library for scaling judge-time compute to enhance the accuracy, reliability, and interpretability of automated evaluators. Verdict leverages the composition of modular reasoning units -- such as verification, debate, and aggregation -- and increased inference-time compute to improve LLM judge quality. Across a variety of challenging tasks such as content moderation, fact-checking, and hallucination detection, Verdict judges achieve state-of-the-art (SOTA) or near-SOTA performance, surpassing orders-of-magnitude larger fine-tuned judges, prompted judges, and reasoning models. Ultimately, we hope Verdict serves as a useful framework for researchers and practitioners building scalable, interpretable, and reliable LLM-based evaluators.
Related papers
- Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators [66.83088028268318]
This paper introduces the Judge Evaluation for Test-Time Scaling benchmark.
It evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings.
Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures.
arXiv Detail & Related papers (2025-04-21T17:33:23Z) - JudgeLRM: Large Reasoning Models as a Judge [65.14085339820795]
We investigate whether Large Language Models (LLMs) judges truly benefit from enhanced reasoning capabilities.
We introduce JudgeLRM, a family of judgment-oriented LLMs trained using reinforcement learning (RL) with judge-wise, outcome-driven rewards.
arXiv Detail & Related papers (2025-03-31T02:18:51Z) - Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models [68.92020689188887]
Retrieval-Augmented Generation (RAG) has proven its effectiveness in alleviating hallucinations for Large Language Models (LLMs)
Existing automated evaluation metrics cannot fairly evaluate the outputs generated by RAG models during training and evaluation.
This paper introduces the Judge-Consistency (ConsJudge) method, which aims to enhance LLMs to generate more accurate evaluations for RAG models.
arXiv Detail & Related papers (2025-02-26T04:50:43Z) - JudgeBlender: Ensembling Judgments for Automatic Relevance Assessment [28.4353755578306]
Large Language Models (LLMs) have shown promise in generating relevance labels for search tasks.<n>We introduce JudgeBlender, a framework that employs smaller, open-source models to provide relevance judgments.
arXiv Detail & Related papers (2024-12-17T19:04:15Z) - JuStRank: Benchmarking LLM Judges for System Ranking [7.507819077549208]
We conduct the first large-scale study of LLM judges as system rankers.<n>System scores are generated by aggregating judgment scores over multiple system outputs.<n>Our analysis provides a fine-grained characterization of judge behavior, including their decisiveness and bias.
arXiv Detail & Related papers (2024-12-12T18:51:13Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
JudgeBench is a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding.
Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks.
arXiv Detail & Related papers (2024-10-16T17:58:19Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks [11.01213914485374]
We study large language models (LLMs) on mathematical reasoning tasks.
Our analysis uncovers a strong correlation between judgment performance and the candidate model task performance.
We show that it is possible to use statistics, such as the task performances of the individual models, to predict judgment performance.
arXiv Detail & Related papers (2024-09-06T10:09:41Z) - Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates [10.091146498861333]
Commercial large language models (LLMs) like GPT-4 have been recently employed to evaluate and compare different alignment approaches.
We develop a framework to evaluate, compare, and visualize the reliability and alignment of LLM judges.
arXiv Detail & Related papers (2024-08-23T11:49:01Z) - JudgeLM: Fine-tuned Large Language Models are Scalable Judges [54.007823006976516]
We propose to fine-tune Large Language Models (LLMs) as scalable judges (JudgeLM) to evaluate LLMs efficiently and effectively in open-ended benchmarks.
We first propose a comprehensive, large-scale, high-quality dataset containing task seeds, LLMs-generated answers, and GPT-4-generated judgments for fine-tuning high-performance judges.
We then analyze the key biases in fine-tuning LLM as a judge and consider them as position bias, knowledge bias, and format bias.
arXiv Detail & Related papers (2023-10-26T17:48:58Z) - Perspectives on Large Language Models for Relevance Judgment [56.935731584323996]
Large language models (LLMs) claim that they can assist with relevance judgments.
It is not clear whether automated judgments can reliably be used in evaluations of retrieval systems.
arXiv Detail & Related papers (2023-04-13T13:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.