CISCA and CytoDArk0: a Cell Instance Segmentation and Classification method for histo(patho)logical image Analyses and a new, open, Nissl-stained dataset for brain cytoarchitecture studies
- URL: http://arxiv.org/abs/2409.04175v1
- Date: Fri, 6 Sep 2024 10:34:06 GMT
- Title: CISCA and CytoDArk0: a Cell Instance Segmentation and Classification method for histo(patho)logical image Analyses and a new, open, Nissl-stained dataset for brain cytoarchitecture studies
- Authors: Valentina Vadori, Jean-Marie Graïc, Antonella Peruffo, Giulia Vadori, Livio Finos, Enrico Grisan,
- Abstract summary: We propose a new deep learning framework (CISCA) for automatic cell instance segmentation and classification in histological slices.
At the core of CISCA lies a network architecture featuring a lightweight U-Net with three heads in the decoder.
We showcase the effectiveness of our method using four datasets, including CoNIC, PanNuke, and MoNuSeg, which are publicly available H&E datasets.
- Score: 0.19791587637442667
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Delineating and classifying individual cells in microscopy tissue images is a complex task, yet it is a pivotal endeavor in various medical and biological investigations. We propose a new deep learning framework (CISCA) for automatic cell instance segmentation and classification in histological slices to support detailed morphological and structural analysis or straightforward cell counting in digital pathology workflows and brain cytoarchitecture studies. At the core of CISCA lies a network architecture featuring a lightweight U-Net with three heads in the decoder. The first head classifies pixels into boundaries between neighboring cells, cell bodies, and background, while the second head regresses four distance maps along four directions. The network outputs from the first and second heads are integrated through a tailored post-processing step, which ultimately yields the segmentation of individual cells. A third head enables simultaneous classification of cells into relevant classes, if required. We showcase the effectiveness of our method using four datasets, including CoNIC, PanNuke, and MoNuSeg, which are publicly available H\&E datasets. Additionally, we introduce CytoDArk0, a novel dataset consisting of Nissl-stained images of the cortex, cerebellum, and hippocampus from mammals belonging to the orders Cetartiodactyla and Primates. We evaluate CISCA in comparison to other state-of-the-art methods, demonstrating CISCA's robustness and accuracy in segmenting and classifying cells across diverse tissue types, magnifications, and staining techniques.
Related papers
- HATs: Hierarchical Adaptive Taxonomy Segmentation for Panoramic Pathology Image Analysis [19.04633470168871]
Panoramic image segmentation in computational pathology presents a remarkable challenge due to the morphologically complex and variably scaled anatomy.
In this paper, we propose a novel Hierarchical Adaptive Taxonomy (HATs) method, which is designed to thoroughly segment panoramic views of kidney structures by leveraging detailed anatomical insights.
Our approach entails (1) the innovative HATs technique which translates spatial relationships among 15 distinct object classes into a versatile "plug-and-play" loss function that spans across regions, functional units, and cells, (2) the incorporation of anatomical hierarchies and scale considerations into a unified simple matrix representation for all panoramic entities, and (3) the
arXiv Detail & Related papers (2024-06-30T05:35:26Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Revealing Cortical Layers In Histological Brain Images With
Self-Supervised Graph Convolutional Networks Applied To Cell-Graphs [0.20971479389679332]
We introduce a self-supervised approach to detect layers in 2D Nissl-stained histological slices of the cerebral cortex.
A self-supervised graph convolutional network generates cell embeddings that encode morphological and structural traits of the cellular environment.
arXiv Detail & Related papers (2023-11-26T10:33:36Z) - NCIS: Deep Color Gradient Maps Regression and Three-Class Pixel
Classification for Enhanced Neuronal Cell Instance Segmentation in
Nissl-Stained Histological Images [0.5273938705774914]
This paper presents an end-to-end framework to automatically segment single neuronal cells in Nissl-stained histological images of the brain.
A U-Net-like architecture with an EfficientNet as the encoder and two decoding branches is exploited to regress four gradient color maps and classify pixels into contours between touching cells, cell bodies, or background.
The method was tested on images of the cerebral cortex and cerebellum, outperforming other recent deep-learning-based approaches for the instance segmentation of cells.
arXiv Detail & Related papers (2023-06-27T20:22:04Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Cells are Actors: Social Network Analysis with Classical ML for SOTA
Histology Image Classification [1.4806818833792859]
We propose to use a statistical network analysis method to describe the complex structure of the tissue micro-environment.
We show that by analysing only the interactions between the cells in a network, we can extract highly discriminative statistical features for CRA grading.
We create cell networks on a broad CRC histology image dataset, experiment with our method, and report state-of-the-art performance for the prediction of three-class CRA grading.
arXiv Detail & Related papers (2021-06-29T12:22:10Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Weakly Supervised 3D Classification of Chest CT using Aggregated
Multi-Resolution Deep Segmentation Features [5.938730586521215]
Weakly supervised disease classification of CT imaging suffers from poor localization owing to case-level annotations.
We propose a medical classifier that leverages semantic structural concepts learned via multi-resolution segmentation feature maps.
arXiv Detail & Related papers (2020-10-31T00:16:53Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.