論文の概要: LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration
- arxiv url: http://arxiv.org/abs/2409.04187v1
- Date: Fri, 6 Sep 2024 11:05:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:05:19.649983
- Title: LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration
- Title(参考訳): LITE: 効率的なReID機能統合によるマルチオブジェクトトラッキングのパラダイムシフト
- Authors: Jumabek Alikhanov, Dilshod Obidov, Hakil Kim,
- Abstract要約: マルチオブジェクト追跡(MOT)手法として,軽量な統合的追跡機能抽出パラダイムが導入された。
推論、前処理、後処理、ReIDモデルのトレーニングコストを削減して、ReIDベースのトラッカーを強化する。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Lightweight Integrated Tracking-Feature Extraction (LITE) paradigm is introduced as a novel multi-object tracking (MOT) approach. It enhances ReID-based trackers by eliminating inference, pre-processing, post-processing, and ReID model training costs. LITE uses real-time appearance features without compromising speed. By integrating appearance feature extraction directly into the tracking pipeline using standard CNN-based detectors such as YOLOv8m, LITE demonstrates significant performance improvements. The simplest implementation of LITE on top of classic DeepSORT achieves a HOTA score of 43.03% at 28.3 FPS on the MOT17 benchmark, making it twice as fast as DeepSORT on MOT17 and four times faster on the more crowded MOT20 dataset, while maintaining similar accuracy. Additionally, a new evaluation framework for tracking-by-detection approaches reveals that conventional trackers like DeepSORT remain competitive with modern state-of-the-art trackers when evaluated under fair conditions. The code will be available post-publication at https://github.com/Jumabek/LITE.
- Abstract(参考訳): 軽量統合追跡機能抽出(LITE)パラダイムは,新しいマルチオブジェクト追跡(MOT)手法として導入されている。
推論、前処理、後処理、ReIDモデルのトレーニングコストを削減して、ReIDベースのトラッカーを強化する。
LITEは、スピードを損なうことなくリアルタイムの外観機能を使用する。
YOLOv8mのような標準のCNNベースの検出器を使用して、外観特徴抽出を直接追跡パイプラインに統合することにより、LITEは大幅なパフォーマンス向上を示す。
古典的なDeepSORT上でのLITEの最も単純な実装は、MOT17ベンチマークの28.3 FPSでHOTAのスコアが43.03%に達し、MOT17のDeepSORTの2倍、MOT20データセットの4倍高速となり、同様の精度を維持している。
さらに, トラッキング・バイ・ディテクト・アプローチの新たな評価フレームワークにより, 従来型のDeepSORTのようなトラッカーは, 公正な条件下での評価を行うと, 現代の最先端トラッカーと競合し続けることが明らかとなった。
コードはhttps://github.com/Jumabek/LITE.comで公開される。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - SFSORT: Scene Features-based Simple Online Real-Time Tracker [0.0]
本稿では,MOTチャレンジデータセットを用いた実験に基づいて,世界最速の多対象追跡システムであるSFSORTを紹介する。
バウンディングボックス類似度指数(英語版)と呼ばれる新しいコスト関数を導入することにより、この研究はカルマンフィルタを排除し、計算要求を減らした。
提案手法は,MOT17データセットで処理速度2242HzのHOTAを61.7%,MOT20データセットで処理速度304HzのHOTAを60.9%とする。
論文 参考訳(メタデータ) (2024-04-11T08:35:24Z) - Context-aware Visual Tracking with Joint Meta-updating [11.226947525556813]
本稿では,シーケンス全体に沿った情報を活用することで,両ブランチを共同でメタ更新する,表現空間上のトラッカーを最適化するコンテキスト認識追跡モデルを提案する。
提案手法は,VOT2018におけるEAOスコアの0.514を40FPSの速度で達成し,基礎となるトラッカーの精度とロバスト性を向上できることを示す。
論文 参考訳(メタデータ) (2022-04-04T14:16:00Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - StrongSORT: Make DeepSORT Great Again [19.099510933467148]
我々は、古典的なトラッカーであるDeepSORTを再検討し、検出、埋め込み、関連付けといった様々な側面からアップグレードする。
結果、StrongSORTと呼ばれるトラッカーは、MOT17とMOT20に新しいHOTAとIDF1レコードをセットする。
追跡結果をさらに改善するために,軽量かつプラグアンドプレイのアルゴリズムを2つ提案する。
論文 参考訳(メタデータ) (2022-02-28T02:37:19Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z) - STMTrack: Template-free Visual Tracking with Space-time Memory Networks [42.06375415765325]
テンプレート更新機構を持つ既存のトラッカーは、競争性能を達成するために、時間を要する数値最適化と複雑な手設計戦略に依存している。
本稿では,ターゲットに関する歴史的情報を十分に活用することのできる,時空メモリネットワーク上に構築した新しいトラッキングフレームワークを提案する。
具体的には、ターゲットの履歴情報を記憶して、トラッカーを現在のフレーム内の最も情報性の高い領域に集中させる新しい記憶機構を導入する。
論文 参考訳(メタデータ) (2021-04-01T08:10:56Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
LSTM(Long Short-Term Memory)リカレントニューラルネットワークに基づくディープラーニングベースのトラッカーが、強力な代替手段として登場した。
DenseLSTMはResidualおよびRegular LSTMより優れ、ニュアンセに対する高いレジリエンスを提供する。
ケーススタディは、他のトラッカーの堅牢性を高めるために残差ベースRNNの採用を支援する。
論文 参考訳(メタデータ) (2020-06-22T08:20:17Z) - Tracking Objects as Points [83.9217787335878]
同時に検出と追跡を同時に行うアルゴリズムは,最先端技術よりもシンプルで,高速で,高精度である。
トラッカーであるCenterTrackは、前のフレームから一対のイメージと検出に検出モデルを適用します。
CenterTrackはシンプルで、オンライン(未来を覗くことはない)で、リアルタイムだ。
論文 参考訳(メタデータ) (2020-04-02T17:58:40Z) - Tracking by Instance Detection: A Meta-Learning Approach [99.66119903655711]
本稿では,高性能トラッカー構築のための3段階の原理的手法を提案する。
我々は2つの現代的な検出器であるRetinaNetとFCOSをベースに、Retina-MAMLとFCOS-MAMLという2つのトラッカーを構築した。
両方のトラッカーは40FPSでリアルタイムに動作します。
論文 参考訳(メタデータ) (2020-04-02T05:55:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。