LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration
- URL: http://arxiv.org/abs/2409.04187v2
- Date: Tue, 1 Oct 2024 03:26:15 GMT
- Title: LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration
- Authors: Jumabek Alikhanov, Dilshod Obidov, Hakil Kim,
- Abstract summary: Lightweight Integrated Tracking-Feature Extraction paradigm is introduced as a novel multi-object tracking (MOT) approach.
It enhances ReID-based trackers by eliminating inference, pre-processing, post-processing, and ReID model training costs.
- Score: 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Lightweight Integrated Tracking-Feature Extraction (LITE) paradigm is introduced as a novel multi-object tracking (MOT) approach. It enhances ReID-based trackers by eliminating inference, pre-processing, post-processing, and ReID model training costs. LITE uses real-time appearance features without compromising speed. By integrating appearance feature extraction directly into the tracking pipeline using standard CNN-based detectors such as YOLOv8m, LITE demonstrates significant performance improvements. The simplest implementation of LITE on top of classic DeepSORT achieves a HOTA score of 43.03% at 28.3 FPS on the MOT17 benchmark, making it twice as fast as DeepSORT on MOT17 and four times faster on the more crowded MOT20 dataset, while maintaining similar accuracy. Additionally, a new evaluation framework for tracking-by-detection approaches reveals that conventional trackers like DeepSORT remain competitive with modern state-of-the-art trackers when evaluated under fair conditions. The code will be available post-publication at https://github.com/Jumabek/LITE.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - SFSORT: Scene Features-based Simple Online Real-Time Tracker [0.0]
This paper introduces SFSORT, the world's fastest multi-object tracking system based on experiments conducted on MOT Challenge datasets.
By introducing a novel cost function called the Bounding Box Similarity Index, this work eliminates the Kalman Filter, leading to reduced computational requirements.
The proposed method achieves an HOTA of 61.7% with a processing speed of 2242 Hz on the MOT17 dataset and an HOTA of 60.9% with a processing speed of 304 Hz on the MOT20 dataset.
arXiv Detail & Related papers (2024-04-11T08:35:24Z) - Context-aware Visual Tracking with Joint Meta-updating [11.226947525556813]
We propose a context-aware tracking model to optimize the tracker over the representation space, which jointly meta-update both branches by exploiting information along the whole sequence.
The proposed tracking method achieves an EAO score of 0.514 on VOT2018 with the speed of 40FPS, demonstrating its capability of improving the accuracy and robustness of the underlying tracker with little speed drop.
arXiv Detail & Related papers (2022-04-04T14:16:00Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
We propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling.
In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance.
OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k.
arXiv Detail & Related papers (2022-03-22T18:37:11Z) - StrongSORT: Make DeepSORT Great Again [19.099510933467148]
We revisit the classic tracker DeepSORT and upgrade it from various aspects, i.e., detection, embedding and association.
The resulting tracker, called StrongSORT, sets new HOTA and IDF1 records on MOT17 and MOT20.
We present two lightweight and plug-and-play algorithms to further refine the tracking results.
arXiv Detail & Related papers (2022-02-28T02:37:19Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - STMTrack: Template-free Visual Tracking with Space-time Memory Networks [42.06375415765325]
Existing trackers with template updating mechanisms rely on time-consuming numerical optimization and complex hand-designed strategies to achieve competitive performance.
We propose a novel tracking framework built on top of a space-time memory network that is competent to make full use of historical information related to the target.
Specifically, a novel memory mechanism is introduced, which stores the historical information of the target to guide the tracker to focus on the most informative regions in the current frame.
arXiv Detail & Related papers (2021-04-01T08:10:56Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z) - Tracking Objects as Points [83.9217787335878]
We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art.
Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame.
CenterTrack is simple, online (no peeking into the future), and real-time.
arXiv Detail & Related papers (2020-04-02T17:58:40Z) - Tracking by Instance Detection: A Meta-Learning Approach [99.66119903655711]
We propose a principled three-step approach to build a high-performance tracker.
We build two trackers, named Retina-MAML and FCOS-MAML, based on two modern detectors RetinaNet and FCOS.
Both trackers run in real-time at 40 FPS.
arXiv Detail & Related papers (2020-04-02T05:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.