LiteTracker: Leveraging Temporal Causality for Accurate Low-latency Tissue Tracking
- URL: http://arxiv.org/abs/2504.09904v1
- Date: Mon, 14 Apr 2025 05:53:57 GMT
- Title: LiteTracker: Leveraging Temporal Causality for Accurate Low-latency Tissue Tracking
- Authors: Mert Asim Karaoglu, Wenbo Ji, Ahmed Abbas, Nassir Navab, Benjamin Busam, Alexander Ladikos,
- Abstract summary: LiteTracker is a low-latency method for tissue tracking in endoscopic video streams.<n> LiteTracker builds on a state-of-the-art long-term point tracking method, and introduces a set of training-free runtime optimizations.
- Score: 84.52765560227917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tissue tracking plays a critical role in various surgical navigation and extended reality (XR) applications. While current methods trained on large synthetic datasets achieve high tracking accuracy and generalize well to endoscopic scenes, their runtime performances fail to meet the low-latency requirements necessary for real-time surgical applications. To address this limitation, we propose LiteTracker, a low-latency method for tissue tracking in endoscopic video streams. LiteTracker builds on a state-of-the-art long-term point tracking method, and introduces a set of training-free runtime optimizations. These optimizations enable online, frame-by-frame tracking by leveraging a temporal memory buffer for efficient feature reuse and utilizing prior motion for accurate track initialization. LiteTracker demonstrates significant runtime improvements being around 7x faster than its predecessor and 2x than the state-of-the-art. Beyond its primary focus on efficiency, LiteTracker delivers high-accuracy tracking and occlusion prediction, performing competitively on both the STIR and SuPer datasets. We believe LiteTracker is an important step toward low-latency tissue tracking for real-time surgical applications in the operating room.
Related papers
- Exploring Temporal Dynamics in Event-based Eye Tracker [3.3325719644030016]
Eye-tracking is a vital technology for human-computer interaction, especially in wearable devices such as AR, VR, and XR.<n>The realization of high-speed and high-precision eye-tracking using frame-based image sensors is constrained by their limited temporal resolution.<n>We propose TDTracker, an effective eye-tracking framework that captures rapid eye movements by thoroughly modeling temporal dynamics.
arXiv Detail & Related papers (2025-03-31T04:57:13Z) - Online Dense Point Tracking with Streaming Memory [54.22820729477756]
Dense point tracking is a challenging task requiring the continuous tracking of every point in the initial frame throughout a substantial portion of a video.<n>Recent point tracking algorithms usually depend on sliding windows for indirect information propagation from the first frame to the current one.<n>We present a lightweight and fast model with textbfStreaming memory for dense textbfPOint textbfTracking and online video processing.
arXiv Detail & Related papers (2025-03-09T06:16:49Z) - Exploring Temporally-Aware Features for Point Tracking [58.63091479730935]
Chrono is a feature backbone specifically designed for point tracking with built-in temporal awareness.<n>Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets.
arXiv Detail & Related papers (2025-01-21T15:39:40Z) - LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration [0.3277163122167433]
Lightweight Integrated Tracking-Feature Extraction paradigm is introduced as a novel multi-object tracking (MOT) approach.
It enhances ReID-based trackers by eliminating inference, pre-processing, post-processing, and ReID model training costs.
arXiv Detail & Related papers (2024-09-06T11:05:12Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.<n>DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.<n>Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - LiteTrack: Layer Pruning with Asynchronous Feature Extraction for
Lightweight and Efficient Visual Tracking [4.179339279095506]
LiteTrack is an efficient transformer-based tracking model optimized for high-speed operations across various devices.
It achieves a more favorable trade-off between accuracy and efficiency than the other lightweight trackers.
LiteTrack-B9 reaches competitive 72.2% AO on GOT-10k and 82.4% AUC on TrackingNet, and operates at 171 fps on an NVIDIA 2080Ti GPU.
arXiv Detail & Related papers (2023-09-17T12:01:03Z) - Towards Real-World Visual Tracking with Temporal Contexts [64.7981374129495]
We propose a two-level framework (TCTrack) that can exploit temporal contexts efficiently.
Based on it, we propose a stronger version for real-world visual tracking, i.e., TCTrack++.
For feature extraction, we propose an attention-based temporally adaptive convolution to enhance the spatial features.
For similarity map refinement, we introduce an adaptive temporal transformer to encode the temporal knowledge efficiently.
arXiv Detail & Related papers (2023-08-20T17:59:40Z) - Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking [84.38335117043907]
We propose a purely passive method to track a person walking in an invisible room by only observing a relay wall.
To excavate imperceptible changes in videos of the relay wall, we introduce difference frames as an essential carrier of temporal-local motion messages.
To evaluate the proposed method, we build and publish the first dynamic passive NLOS tracking dataset, NLOS-Track.
arXiv Detail & Related papers (2023-03-21T12:18:57Z) - STMTrack: Template-free Visual Tracking with Space-time Memory Networks [42.06375415765325]
Existing trackers with template updating mechanisms rely on time-consuming numerical optimization and complex hand-designed strategies to achieve competitive performance.
We propose a novel tracking framework built on top of a space-time memory network that is competent to make full use of historical information related to the target.
Specifically, a novel memory mechanism is introduced, which stores the historical information of the target to guide the tracker to focus on the most informative regions in the current frame.
arXiv Detail & Related papers (2021-04-01T08:10:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.