How to Identify Good Superpixels for Deforestation Detection on Tropical Rainforests
- URL: http://arxiv.org/abs/2409.04330v1
- Date: Fri, 6 Sep 2024 15:05:32 GMT
- Title: How to Identify Good Superpixels for Deforestation Detection on Tropical Rainforests
- Authors: Isabela Borlido, Eduardo Bouhid, Victor Sundermann, Hugo Resende, Alvaro Luiz Fazenda, Fabio Faria, Silvio Jamil F. GuimarĂ£es,
- Abstract summary: We evaluate 16 superpixel methods in satellite images to support a deforestation detection system in tropical forests.
According to our results, ERS, GMMSP, and DISF perform best on UE, BR, and SIRS, respectively.
Superpixel methods with better trade-offs between delineation, homogeneity, compactness, and regularity are more suitable for identifying good superpixels for deforestation detection tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The conservation of tropical forests is a topic of significant social and ecological relevance due to their crucial role in the global ecosystem. Unfortunately, deforestation and degradation impact millions of hectares annually, requiring government or private initiatives for effective forest monitoring. However, identifying deforested regions in satellite images is challenging due to data imbalance, image resolution, low-contrast regions, and occlusion. Superpixel segmentation can overcome these drawbacks, reducing workload and preserving important image boundaries. However, most works for remote sensing images do not exploit recent superpixel methods. In this work, we evaluate 16 superpixel methods in satellite images to support a deforestation detection system in tropical forests. We also assess the performance of superpixel methods for the target task, establishing a relationship with segmentation methodological evaluation. According to our results, ERS, GMMSP, and DISF perform best on UE, BR, and SIRS, respectively, whereas ERS has the best trade-off with CO and Reg. In classification, SH, DISF, and ISF perform best on RGB, UMDA, and PCA compositions, respectively. According to our experiments, superpixel methods with better trade-offs between delineation, homogeneity, compactness, and regularity are more suitable for identifying good superpixels for deforestation detection tasks.
Related papers
- Exploring Superpixel Segmentation Methods in the Context of Citizen Science and Deforestation Detection [0.0]
Tropical forests play an essential role in the planet's ecosystem.
deforestation and degradation pose a significant threat to their existence.
initiatives range from government and private sector monitoring programs to solutions based on citizen science campaigns.
arXiv Detail & Related papers (2024-11-26T22:31:09Z) - SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
'SaccadeDet' is an innovative architecture for gigapixel-level object detection, inspired by the human eye saccadic movement.
Our approach, evaluated on the PANDA dataset, achieves an 8x speed increase over the state-of-the-art methods.
It also demonstrates significant potential in gigapixel-level pathology analysis through its application to Whole Slide Imaging.
arXiv Detail & Related papers (2024-07-25T11:22:54Z) - Rapid Deforestation and Burned Area Detection using Deep Multimodal
Learning on Satellite Imagery [3.8073142980733]
Deforestation estimation and fire detection in the Amazon forest poses a significant challenge due to the vast size of the area.
multimodal satellite imagery and remote sensing offer a promising solution for estimating deforestation and detecting wildfire in the Amazonia region.
This research paper introduces a new curated dataset and a deep learning-based approach to solve these problems using convolutional neural networks (CNNs) and comprehensive data processing techniques.
arXiv Detail & Related papers (2023-07-10T21:49:30Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - MultiEarth 2022 Deforestation Challenge -- ForestGump [0.0]
We present an accurate deforestation estimation method with conventional UNet and comprehensive data processing.
The diverse channels of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to train deep neural networks.
With the proposed method, deforestation status for novel queries are successfully estimated with high accuracy.
arXiv Detail & Related papers (2022-06-22T04:10:07Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) has several applications in image analysis.
Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors.
We introduce a post-processing method, named textitSaliency Enhancement over Superpixel Similarity (SESS)
We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.
arXiv Detail & Related papers (2021-12-01T17:22:54Z) - Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional
Pixel Synthesis [66.50914391487747]
We propose a new conditional pixel synthesis model that uses abundant, low-cost, low-resolution imagery to generate accurate high-resolution imagery.
We show that our model attains photo-realistic sample quality and outperforms competing baselines on a key downstream task -- object counting.
arXiv Detail & Related papers (2021-06-22T02:16:24Z) - Superpixel Segmentation using Dynamic and Iterative Spanning Forest [0.0]
We present Dynamic ISF (DISF) -- a method based on the following steps.
As compared to other seed-based superpixel methods, DISF is more likely to find relevant seeds.
It also introduces dynamic arc-weight estimation in the ISF framework for more effective superpixel delineation.
arXiv Detail & Related papers (2020-07-08T16:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.