A naive aggregation algorithm for improving generalization in a class of learning problems
- URL: http://arxiv.org/abs/2409.04352v1
- Date: Fri, 6 Sep 2024 15:34:17 GMT
- Title: A naive aggregation algorithm for improving generalization in a class of learning problems
- Authors: Getachew K Befekadu,
- Abstract summary: We present a naive aggregation algorithm for a typical learning problem with expert advice setting.
In particular, we consider a class of learning problem of point estimations for modeling high-dimensional nonlinear functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this brief paper, we present a naive aggregation algorithm for a typical learning problem with expert advice setting, in which the task of improving generalization, i.e., model validation, is embedded in the learning process as a sequential decision-making problem. In particular, we consider a class of learning problem of point estimations for modeling high-dimensional nonlinear functions, where a group of experts update their parameter estimates using the discrete-time version of gradient systems, with small additive noise term, guided by the corresponding subsample datasets obtained from the original dataset. Here, our main objective is to provide conditions under which such an algorithm will sequentially determine a set of mixing distribution strategies used for aggregating the experts' estimates that ultimately leading to an optimal parameter estimate, i.e., as a consensus solution for all experts, which is better than any individual expert's estimate in terms of improved generalization or learning performances. Finally, as part of this work, we present some numerical results for a typical case of nonlinear regression problem.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Absolute Ranking: An Essential Normalization for Benchmarking Optimization Algorithms [0.0]
evaluating performance across optimization algorithms on many problems presents a complex challenge due to the diversity of numerical scales involved.
This paper extensively explores the problem, making a compelling case to underscore the issue and conducting a thorough analysis of its root causes.
Building on this research, this paper introduces a new mathematical model called "absolute ranking" and a sampling-based computational method.
arXiv Detail & Related papers (2024-09-06T00:55:03Z) - Embedding generalization within the learning dynamics: An approach based-on sample path large deviation theory [0.0]
We consider an empirical risk perturbation based learning problem that exploits methods from continuous-time perspective.
We provide an estimate in the small noise limit based on the Freidlin-Wentzell theory of large deviations.
We also present a computational algorithm that solves the corresponding variational problem leading to an optimal point estimates.
arXiv Detail & Related papers (2024-08-04T23:31:35Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Understanding Generalization of Federated Learning via Stability:
Heterogeneity Matters [1.4502611532302039]
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
arXiv Detail & Related papers (2023-06-06T16:12:35Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
We propose a new framework directly integrating predictive tasks under prescriptive tasks.
We train the parameters of predictive algorithm within a prescription problem via bilevel optimization techniques.
arXiv Detail & Related papers (2021-01-02T02:43:10Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.