Absolute Ranking: An Essential Normalization for Benchmarking Optimization Algorithms
- URL: http://arxiv.org/abs/2409.04479v1
- Date: Fri, 6 Sep 2024 00:55:03 GMT
- Title: Absolute Ranking: An Essential Normalization for Benchmarking Optimization Algorithms
- Authors: Yunpeng Jinng, Qunfeng Liu,
- Abstract summary: evaluating performance across optimization algorithms on many problems presents a complex challenge due to the diversity of numerical scales involved.
This paper extensively explores the problem, making a compelling case to underscore the issue and conducting a thorough analysis of its root causes.
Building on this research, this paper introduces a new mathematical model called "absolute ranking" and a sampling-based computational method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating performance across optimization algorithms on many problems presents a complex challenge due to the diversity of numerical scales involved. Traditional data processing methods, such as hypothesis testing and Bayesian inference, often employ ranking-based methods to normalize performance values across these varying scales. However, a significant issue emerges with this ranking-based approach: the introduction of new algorithms can potentially disrupt the original rankings. This paper extensively explores the problem, making a compelling case to underscore the issue and conducting a thorough analysis of its root causes. These efforts pave the way for a comprehensive examination of potential solutions. Building on this research, this paper introduces a new mathematical model called "absolute ranking" and a sampling-based computational method. These contributions come with practical implementation recommendations, aimed at providing a more robust framework for addressing the challenge of numerical scale variation in the assessment of performance across multiple algorithms and problems.
Related papers
- A naive aggregation algorithm for improving generalization in a class of learning problems [0.0]
We present a naive aggregation algorithm for a typical learning problem with expert advice setting.
In particular, we consider a class of learning problem of point estimations for modeling high-dimensional nonlinear functions.
arXiv Detail & Related papers (2024-09-06T15:34:17Z) - A Guide to Stochastic Optimisation for Large-Scale Inverse Problems [4.926711494319977]
optimisation algorithms are the de facto standard for machine learning with large amounts of data.
We provide a comprehensive account of the state-of-the-art in optimisation from the viewpoint of inverse problems.
We focus on the challenges for optimisation that are unique and are not commonly encountered in machine learning.
arXiv Detail & Related papers (2024-06-10T15:02:30Z) - A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
We provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems.
The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure.
arXiv Detail & Related papers (2024-05-31T19:35:34Z) - Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm [4.0814527055582746]
It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
arXiv Detail & Related papers (2023-09-04T06:32:02Z) - Best-Effort Adaptation [62.00856290846247]
We present a new theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights.
We show how these bounds can guide the design of learning algorithms that we discuss in detail.
We report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms.
arXiv Detail & Related papers (2023-05-10T00:09:07Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.