論文の概要: Leveraging Machine Learning for Official Statistics: A Statistical Manifesto
- arxiv url: http://arxiv.org/abs/2409.04365v1
- Date: Fri, 6 Sep 2024 15:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 15:24:36.102411
- Title: Leveraging Machine Learning for Official Statistics: A Statistical Manifesto
- Title(参考訳): 公式統計のための機械学習を活用する - 統計的マニフェスト
- Authors: Marco Puts, David Salgado, Piet Daas,
- Abstract要約: 統計的厳密な機械学習を適用することは、公式統計生産にとって重要である。
The Total Machine Learning Error (TMLE)は、調査手法で使用されるTotal Survey Error Modelに類似したフレームワークとして提示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is important for official statistics production to apply ML with statistical rigor, as it presents both opportunities and challenges. Although machine learning has enjoyed rapid technological advances in recent years, its application does not possess the methodological robustness necessary to produce high quality statistical results. In order to account for all sources of error in machine learning models, the Total Machine Learning Error (TMLE) is presented as a framework analogous to the Total Survey Error Model used in survey methodology. As a means of ensuring that ML models are both internally valid as well as externally valid, the TMLE model addresses issues such as representativeness and measurement errors. There are several case studies presented, illustrating the importance of applying more rigor to the application of machine learning in official statistics.
- Abstract(参考訳): 統計学は、統計学を統計学に応用することが重要であり、機会と課題の両方を提示する。
近年、機械学習は急速な技術進歩を享受しているが、その応用には高品質な統計結果を生み出すために必要な方法論的堅牢性はない。
機械学習モデルにおける全てのエラー源を説明するため、Total Machine Learning Error (TMLE)は、調査手法で使用されるTotal Survey Error Modelに類似したフレームワークとして提示される。
MLモデルが内部でも外部でも有効であることを保証する手段として、TMLEモデルは代表性や測定誤差といった問題に対処する。
いくつかのケーススタディが提示され、公式統計における機械学習の適用により多くの厳密さを適用することの重要性が説明されている。
関連論文リスト
- Towards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning? [39.58317527488534]
本研究は,信頼性評価を改善するための古典的統計手法と機械学習手法の有効性を比較した。
従来の統計アルゴリズムは、ブラックボックスの機械学習手法よりも正確で解釈可能な結果が得られることを実証することを目的としている。
論文 参考訳(メタデータ) (2024-10-05T17:31:18Z) - Task-Agnostic Machine-Learning-Assisted Inference [0.0]
タスクに依存しないML支援推論のためのPSPSという新しい統計フレームワークを提案する。
PSPSは、ほぼすべての確立したデータ分析ルーチンに簡単にプラグインできる予測後推論ソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-30T13:19:49Z) - Statistical inference using machine learning and classical techniques
based on accumulated local effects (ALE) [0.0]
Accumulated Local Effects (ALE) は、機械学習アルゴリズムのグローバルな説明のためのモデルに依存しないアプローチである。
ALEに基づく統計的推論を行うには,少なくとも3つの課題がある。
ALEを用いた統計的推論のための革新的なツールと技術を紹介する。
論文 参考訳(メタデータ) (2023-10-15T16:17:21Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Statistical inference for individual fairness [24.622418924551315]
機械学習モデルにおける個々人の公平性の違反を検出する問題に注目する。
我々は,対向コスト関数のための一連の推論ツールを開発した。
実世界のケーススタディでツールの有用性を実証します。
論文 参考訳(メタデータ) (2021-03-30T22:49:25Z) - A Note on High-Probability versus In-Expectation Guarantees of
Generalization Bounds in Machine Learning [95.48744259567837]
統計的機械学習理論は、しばしば機械学習モデルの一般化を保証するよう試みる。
機械学習モデルのパフォーマンスに関する声明は、サンプリングプロセスを考慮する必要がある。
1つのステートメントを別のステートメントに変換する方法を示します。
論文 参考訳(メタデータ) (2020-10-06T09:41:35Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Insights into Performance Fitness and Error Metrics for Machine Learning [1.827510863075184]
機械学習(ML)は、高いレベルの認知を達成し、人間のような分析を行うための訓練機械の分野である。
本稿では、回帰アルゴリズムや分類アルゴリズムにおいて、最もよく使われている性能適合度と誤差の測定値について検討する。
論文 参考訳(メタデータ) (2020-05-17T22:59:04Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。