Accelerating Training with Neuron Interaction and Nowcasting Networks
- URL: http://arxiv.org/abs/2409.04434v2
- Date: Thu, 3 Oct 2024 17:57:59 GMT
- Title: Accelerating Training with Neuron Interaction and Nowcasting Networks
- Authors: Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, Simon Lacoste-Julien,
- Abstract summary: Learnable update rules can be costly and unstable to train and use.
We propose NiNo to accelerate training based on weight nowcaster networks (WNNs)
- Score: 34.14695001650589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks.
Related papers
- Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
Spiking neural networks (SNNs) have gained attention as a promising alternative to traditional artificial neural networks (ANNs)
In this paper, we study the impact of skip connections on SNNs and propose a hyper parameter optimization technique that adapts models from ANN to SNN.
We demonstrate that optimizing the position, type, and number of skip connections can significantly improve the accuracy and efficiency of SNNs.
arXiv Detail & Related papers (2023-03-23T07:57:32Z) - Hybrid Spiking Neural Network Fine-tuning for Hippocampus Segmentation [3.1247096708403914]
Spiking neural networks (SNNs) have emerged as a low-power alternative to artificial neural networks (ANNs)
In this work, we propose a hybrid SNN training scheme and apply it to segment human hippocampi from magnetic resonance images.
arXiv Detail & Related papers (2023-02-14T20:18:57Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Accelerating spiking neural network training [1.6114012813668934]
Spiking neural networks (SNN) are a type of artificial network inspired by the use of action potentials in the brain.
We propose a new technique for directly training single-spike-per-neur-on SNNs which eliminates all sequential computation and relies exclusively on vectorised operations.
Our proposed solution manages to solve certain tasks with over a $95.68 %$ reduction in spike counts relative to a conventionally trained SNN, which could significantly reduce energy requirements when deployed on neuromorphic computers.
arXiv Detail & Related papers (2022-05-30T17:48:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Improving Surrogate Gradient Learning in Spiking Neural Networks via
Regularization and Normalization [0.0]
Spiking neural networks (SNNs) are different from the classical networks used in deep learning.
SNNs are appealing for AI technology, because they could be implemented on low power neuromorphic chips.
arXiv Detail & Related papers (2021-12-13T15:24:33Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.