論文の概要: DeepTTV: Deep Learning Prediction of Hidden Exoplanet From Transit Timing Variations
- arxiv url: http://arxiv.org/abs/2409.04557v1
- Date: Fri, 6 Sep 2024 18:35:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 22:10:46.319050
- Title: DeepTTV: Deep Learning Prediction of Hidden Exoplanet From Transit Timing Variations
- Title(参考訳): DeepTTV: トランジット時間変動による隠れた太陽系外惑星の深層学習予測
- Authors: Chen Chen, Lingkai Kong, Gongjie Li, Molei Tao,
- Abstract要約: トランジットタイミング変動(TTV)は、太陽系外惑星の質量と軌道特性に関する豊富な情報を提供する。
我々は、単一トランジットシステムにおいて、非トランジットコンパニオンのパラメータを予測するためにディープラーニングアプローチを用いる。
新たに構築されたtextitTransformerベースのアーキテクチャのおかげで、これまでは難しかったタスクを高精度で実行できるようになった。
- 参考スコア(独自算出の注目度): 21.19490980622924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transit timing variation (TTV) provides rich information about the mass and orbital properties of exoplanets, which are often obtained by solving an inverse problem via Markov Chain Monte Carlo (MCMC). In this paper, we design a new data-driven approach, which potentially can be applied to problems that are hard to traditional MCMC methods, such as the case with only one planet transiting. Specifically, we use a deep learning approach to predict the parameters of non-transit companion for the single transit system with transit information (i.e., TTV, and Transit Duration Variation (TDV)) as input. Thanks to a newly constructed \textit{Transformer}-based architecture that can extract long-range interactions from TTV sequential data, this previously difficult task can now be accomplished with high accuracy, with an overall fractional error of $\sim$2\% on mass and eccentricity.
- Abstract(参考訳): トランジットタイミング変動(TTV)は、しばしばマルコフ・チェイン・モンテカルロ(MCMC)による逆問題の解法によって得られる太陽系外惑星の質量と軌道の性質に関する豊富な情報を提供する。
本稿では,惑星が1つしか通過しない場合など,従来のMCMC法では難しい問題に適用可能な,新しいデータ駆動型アプローチを設計する。
具体的には,トランジット情報(TTV,トランジット時間変化(TDV))を入力とする単一トランジットシステムにおいて,非トランジットコンパニオンのパラメータを予測するために,ディープラーニングアプローチを用いる。
TTVシーケンシャルデータから長距離インタラクションを抽出できる、新たに構築された \textit{Transformer} ベースのアーキテクチャのおかげで、この従来難しかったタスクは、質量と偏心度に対して$\sim$2\%の差分誤差で、高い精度で達成できるようになった。
関連論文リスト
- Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory [53.37473225728298]
ディープラーニングと大規模言語モデルの急速な進化により、トレーニングデータの需要が指数関数的に増加した。
MTT(Matching Training Trajectories)は、専門家ネットワークのトレーニングトラジェクトリを、合成データセットで実データ上に複製する、顕著なアプローチである。
そこで本研究では,学生の軌道に対するより良いガイダンスを提供することを目的として,MCT (Matching Convexified Trajectory) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T11:06:46Z) - Considering Nonstationary within Multivariate Time Series with
Variational Hierarchical Transformer for Forecasting [12.793705636683402]
MTS内の非定常性と固有特性を考慮した強力な階層的確率的生成モジュールを開発した。
次に、階層時間系列変分変換器(HTV-Trans)という、明確に定義された変動生成動的モデルに対する変換器と組み合わせる。
HTV-Transは強力な確率モデルであり、MTSの表現表現を学習し、予測タスクに適用する。
論文 参考訳(メタデータ) (2024-03-08T16:04:36Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Estimating Latent Population Flows from Aggregated Data via Inversing
Multi-Marginal Optimal Transport [57.16851632525864]
累積カウントデータから潜在人口フローを推定する問題について検討する。
この問題は、プライバシーの問題や測定の不確実性のために個々の軌道が利用できない場合に発生する。
我々はMOTフレームワークのコスト関数を学習し,集約データからの遷移フローを推定する。
論文 参考訳(メタデータ) (2022-12-30T03:03:23Z) - High-Performance Transformer Tracking [74.07751002861802]
本稿では,シームズ様特徴抽出バックボーンをベースとしたTransformer Tracking(TransT)手法,設計した注意に基づく融合機構,分類と回帰ヘッドを提案する。
実験の結果,TransT法とTransT-M法は7つの一般的なデータセットに対して有望な結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-25T09:33:29Z) - Automatically detecting anomalous exoplanet transits [0.0]
本稿では,一対の変分オートエンコーダを用いて,メイントランジットと残差の遅延表現を推定するアーキテクチャを提案する。
得られた2つのデータを用いて, 異常なトランジット残差の潜在表現が, 生データよりも異常検出に顕著に有用であることを示す。
我々の研究は、異常な太陽系外惑星のトランジット曲線を自動的に同定する最初のものである。
論文 参考訳(メタデータ) (2021-11-16T18:24:49Z) - Alleviating the transit timing variation bias in transit surveys. I.
RIVERS: Method and detection of a pair of resonant super-Earths around
Kepler-1705 [0.0]
トランジットタイミング変動(TTV)は、トランジットによって観測されるシステムに有用な情報を提供する。
それらはまた、トランジットサーベイで小さな惑星を検出するのを防ぐ検出バイアスとして振る舞うことができる。
本稿では,大規模なTTVに対してロバストな検出手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T17:15:52Z) - Parallel Multi-Graph Convolution Network For Metro Passenger Volume
Prediction [8.536743588315696]
本稿では,並列多グラフ畳み込みと双方向一方向Gated Recurrent Unit(PB-GRU)を重畳した深層学習モデルを提案する。
地下鉄の乗客の流れを実世界の2つのデータセットで分析した結果,モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-08-29T13:07:18Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
映像内の物体間の空間的・時間的相互作用を効率的にモデル化するソリューションであるTransMOTを提案する。
TransMOTは従来のTransformerよりも計算効率が高いだけでなく、トラッキング精度も向上している。
提案手法は、MOT15、MOT16、MOT17、MOT20を含む複数のベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-04-01T01:49:05Z) - Leveraging the Self-Transition Probability of Ordinal Pattern Transition
Graph for Transportation Mode Classification [0.0]
本稿では,交通モード分類における自己遷移の確率という,通常のパターン遷移グラフから保持される特徴の利用を提案する。
提案手法は,これらを組み合わせた場合であっても,置換エントロピーや統計的複雑度よりも精度がよい。
論文 参考訳(メタデータ) (2020-07-16T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。