論文の概要: ActionFlow: Equivariant, Accurate, and Efficient Policies with Spatially Symmetric Flow Matching
- arxiv url: http://arxiv.org/abs/2409.04576v1
- Date: Fri, 6 Sep 2024 19:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 22:10:46.292813
- Title: ActionFlow: Equivariant, Accurate, and Efficient Policies with Spatially Symmetric Flow Matching
- Title(参考訳): ActionFlow: 空間的に対称なフローマッチングを伴う同変量, 精度, 効率的ポリシ
- Authors: Niklas Funk, Julen Urain, Joao Carvalho, Vignesh Prasad, Georgia Chalvatzaki, Jan Peters,
- Abstract要約: ActionFlowは、空間対称性誘導バイアスを統合するポリシークラスである。
表現レベルでは、ActionFlowはSE(3)不変トランスフォーマーアーキテクチャを導入している。
ActionFlowは、最先端の深層生成モデルであるFlow Matchingを活用する。
- 参考スコア(独自算出の注目度): 20.20511152176522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial understanding is a critical aspect of most robotic tasks, particularly when generalization is important. Despite the impressive results of deep generative models in complex manipulation tasks, the absence of a representation that encodes intricate spatial relationships between observations and actions often limits spatial generalization, necessitating large amounts of demonstrations. To tackle this problem, we introduce a novel policy class, ActionFlow. ActionFlow integrates spatial symmetry inductive biases while generating expressive action sequences. On the representation level, ActionFlow introduces an SE(3) Invariant Transformer architecture, which enables informed spatial reasoning based on the relative SE(3) poses between observations and actions. For action generation, ActionFlow leverages Flow Matching, a state-of-the-art deep generative model known for generating high-quality samples with fast inference - an essential property for feedback control. In combination, ActionFlow policies exhibit strong spatial and locality biases and SE(3)-equivariant action generation. Our experiments demonstrate the effectiveness of ActionFlow and its two main components on several simulated and real-world robotic manipulation tasks and confirm that we can obtain equivariant, accurate, and efficient policies with spatially symmetric flow matching. Project website: https://flowbasedpolicies.github.io/
- Abstract(参考訳): 空間的理解は、特に一般化が重要である場合、ほとんどのロボット作業において重要な側面である。
複雑な操作タスクにおける深い生成モデルによる印象的な結果にもかかわらず、観察と行動の間の複雑な空間的関係を符号化する表現がないことは、しばしば空間的一般化を制限し、大量のデモンストレーションを必要とする。
この問題に対処するために、新しいポリシークラスであるActionFlowを紹介します。
ActionFlowは、表現力のあるアクションシーケンスを生成しながら、空間対称性誘導バイアスを統合する。
表現レベルでは、ActionFlowはSE(3)不変トランスフォーマーアーキテクチャを導入している。
ActionFlowは、高速な推論で高品質なサンプルを生成することで知られている最先端の深層生成モデルであるFlow Matchingを活用する。
ActionFlowポリシーは、強い空間的および局所性バイアスとSE(3)等価なアクション生成を示す。
実験では,ActionFlowとその2つの主要コンポーネントが実世界のロボット操作のシミュレーション作業に有効であることを実証し,空間対称なフローマッチングによる同変,正確,効率的なポリシを実現できることを確認した。
プロジェクトウェブサイト:https://flowbasedpolicies.github.io/
関連論文リスト
- ScaleFlow++: Robust and Accurate Estimation of 3D Motion from Video [26.01796507893086]
本稿では,3次元モーション認識手法であるScaleFlow++を提案する。
たった1対のRGBイメージで、ScaleFlow++は光学フローとモーションインディープス(MID)をしっかりと推定できる。
KITTIでは、ScaleFlow++は、SF-allを6.21から5.79に削減し、最高のモノクロシーンフロー推定性能を達成した。
論文 参考訳(メタデータ) (2024-09-16T11:59:27Z) - SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving [18.88208422580103]
連続したLiDARスキャンで各点における3次元運動を予測する。
現在の最先端の手法は、シーンフローネットワークをトレーニングするために注釈付きデータを必要とする。
本研究では,効率的な動的分類を学習に基づくシーンフローパイプラインに統合するSeFlowを提案する。
論文 参考訳(メタデータ) (2024-07-01T18:22:54Z) - Baking Symmetry into GFlowNets [58.932776403471635]
GFlowNetsは、さまざまな候補を高い報酬で生成する上で、有望なパフォーマンスを示している。
本研究は,生成過程における等価な動作を特定することにより,GFlowNetに対称性を統合することを目的とする。
論文 参考訳(メタデータ) (2024-06-08T10:11:10Z) - MaskFlow: Object-Aware Motion Estimation [0.45646200630189254]
本研究では,高精度な運動場を推定できる新しい動き推定手法MaskFlowを提案する。
他のディープニューラルネットワーク(DNN)ベースのモーション推定手法で使用される低レベルの機能に加えて、MaskFlowはオブジェクトレベルの機能やセグメンテーションから引き出される。
論文 参考訳(メタデータ) (2023-11-21T09:37:49Z) - TransFlow: Transformer as Flow Learner [22.727953339383344]
本稿では,光フロー推定のためのトランスフォーマーアーキテクチャであるTransFlowを提案する。
フロー推定において、より正確な相関と信頼できるマッチングを提供する。
ダイナミックなシーンにおける長距離時間的関連を通して、フロー推定においてより妥協された情報を復元する。
論文 参考訳(メタデータ) (2023-04-23T03:11:23Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
本研究では,PointFlowHopと呼ばれる3次元シーンフローの効率的な推定法を提案する。
ポイントフローホップは2つの連続する点雲を取り、第1点雲の各点の3次元フローベクトルを決定する。
シーンフロー推定タスクを,エゴモーション補償,オブジェクトアソシエーション,オブジェクトワイドモーション推定など,一連のサブタスクに分解する。
論文 参考訳(メタデータ) (2023-02-27T23:06:01Z) - D$^3$FlowSLAM: Self-Supervised Dynamic SLAM with Flow Motion Decomposition and DINO Guidance [61.14088096348959]
本稿では,動的シーンにおいて動的コンポーネントを正確に識別しながら頑健に動作する自己教師型ディープSLAM法を提案する。
本稿では,この表現に基づく動的更新モジュールを提案し,動的シナリオに優れた高密度SLAMシステムの開発を行う。
論文 参考訳(メタデータ) (2022-07-18T17:47:39Z) - LocATe: End-to-end Localization of Actions in 3D with Transformers [91.28982770522329]
LocATeは、3Dシーケンスでアクションを共同でローカライズし認識するエンドツーエンドのアプローチである。
画像やパッチの特徴を入力として考えるトランスフォーマーベースのオブジェクト検出や分類モデルとは異なり、LocATeのトランスフォーマーモデルはシーケンス内のアクション間の長期的な相関をキャプチャすることができる。
BABEL-TAL-20 (BT20) という新しい,挑戦的で,より現実的なベンチマークデータセットを導入する。
論文 参考訳(メタデータ) (2022-03-21T03:35:32Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - Towards High-Quality Temporal Action Detection with Sparse Proposals [14.923321325749196]
時間的アクション検出は、人間のアクションインスタンスを含む時間的セグメントをローカライズし、アクションカテゴリを予測することを目的としている。
階層的特徴と相互作用するためにスパース提案を導入する。
実験により,高いtIoU閾値下での本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-09-18T06:15:19Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
本稿では,アクションのシーケンスからオブジェクトを生成するためのポリシーを学習する問題について述べる。
本稿では,生成過程をフローネットワークとして見たGFlowNetを提案する。
提案した目的の任意のグローバルな最小限が、所望の分布から標本化する方針を導出することを証明する。
論文 参考訳(メタデータ) (2021-06-08T14:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。