論文の概要: A Novel Dataset for Video-Based Autism Classification Leveraging Extra-Stimulatory Behavior
- arxiv url: http://arxiv.org/abs/2409.04598v1
- Date: Fri, 6 Sep 2024 20:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:42:30.201335
- Title: A Novel Dataset for Video-Based Autism Classification Leveraging Extra-Stimulatory Behavior
- Title(参考訳): 刺激外行動を利用したビデオベース自閉症分類のための新しいデータセット
- Authors: Manuel Serna-Aguilera, Xuan Bac Nguyen, Han-Seok Seo, Khoa Luu,
- Abstract要約: ビデオASDデータセットは、ビデオフレームの畳み込みとアテンションマップの特徴データを含む。
このデータセットには2,467本のビデオにまたがるフレームの特徴が含まれており、合計で約140万フレームである。
機能の提供に加えて、このデータに基づく基礎モデルもテストし、運動ノイズがパフォーマンスにどのように影響するかを示す。
- 参考スコア(独自算出の注目度): 10.019271825311316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autism Spectrum Disorder (ASD) can affect individuals at varying degrees of intensity, from challenges in overall health, communication, and sensory processing, and this often begins at a young age. Thus, it is critical for medical professionals to be able to accurately diagnose ASD in young children, but doing so is difficult. Deep learning can be responsibly leveraged to improve productivity in addressing this task. The availability of data, however, remains a considerable obstacle. Hence, in this work, we introduce the Video ASD dataset--a dataset that contains video frame convolutional and attention map feature data--to foster further progress in the task of ASD classification. The original videos showcase children reacting to chemo-sensory stimuli, among auditory, touch, and vision This dataset contains the features of the frames spanning 2,467 videos, for a total of approximately 1.4 million frames. Additionally, head pose angles are included to account for head movement noise, as well as full-sentence text labels for the taste and smell videos that describe how the facial expression changes before, immediately after, and long after interaction with the stimuli. In addition to providing features, we also test foundation models on this data to showcase how movement noise affects performance and the need for more data and more complex labels.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)は、健康、コミュニケーション、感覚処理の課題から、様々な強度の個人に影響を与える可能性がある。
そのため、小児のASDを正確に診断することは、医療専門家にとって極めて重要であるが、そうすることは困難である。
ディープラーニングは、このタスクに対処する際の生産性を向上させるために、責任を持って活用することができる。
しかし、データの入手は依然としてかなりの障害となっている。
そこで本研究では,ビデオフレームの畳み込みとアテンションマップの特徴的特徴を含むデータセットであるビデオASDデータセットを導入し,ASD分類の課題のさらなる進展を促す。
このデータセットには、2,467本のビデオにまたがるフレームの特徴が含まれており、合計で約140万フレームである。
また、頭部運動ノイズを考慮に入れた頭部ポーズ角や、刺激との相互作用の前、後、後、後、後、後の表情がどのように変化するかを記述する味覚・嗅覚ビデオのフルセンステキストラベルも含んでいる。
機能の提供に加えて、運動ノイズがパフォーマンスに与える影響と、より多くのデータとより複雑なラベルの必要性を示すために、このデータに関する基礎モデルもテストします。
関連論文リスト
- Advanced Gesture Recognition in Autism: Integrating YOLOv7, Video Augmentation and VideoMAE for Video Analysis [9.162792034193373]
本研究は, 子どもが日常活動を行う際に, 自然環境下で撮影した映像を分析し, 自閉症を示唆する反復行動を特定することを目的とする。
焦点は、回転、ヘッドバンピング、腕の羽ばたきといったリアルタイムの反復的なジェスチャーを正確に分類することである。
提案手法の重要な構成要素は、ビデオデータの空間的・時間的分析を改善するモデルである textbfVideoMAE の利用である。
論文 参考訳(メタデータ) (2024-10-12T02:55:37Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
本稿では,音声・視覚自閉症の行動認識の新たな課題について紹介する。
社会的行動認識は、AIによる自閉症スクリーニング研究において、これまで省略されてきた重要な側面である。
データセット、コード、事前トレーニングされたモデルをリリースします。
論文 参考訳(メタデータ) (2024-03-22T22:52:35Z) - Video-Based Autism Detection with Deep Learning [0.0]
感覚刺激に反応する子供の映像クリップを解析する深層学習モデルを開発した。
以上の結果から,本モデルは子どもの運動における重要な違いを効果的に一般化し,理解していることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-26T17:45:00Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - Language-Assisted Deep Learning for Autistic Behaviors Recognition [13.200025637384897]
本稿では,視覚に基づく問題行動認識システムにおいて,従来の手法よりも高い精度で性能を向上できることを示す。
問題行動の種類毎に「自由利用」言語記述を取り入れた2分岐マルチモーダルディープラーニングフレームワークを提案する。
実験結果から,言語指導を付加することで,自閉症の行動認識タスクに明らかなパフォーマンス向上がもたらされることが示された。
論文 参考訳(メタデータ) (2022-11-17T02:58:55Z) - How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios [73.24092762346095]
情緒応答と主観的幸福感に注釈を付けた6万本以上のビデオを備えた大規模データセットを2つ導入した。
Video Cognitive Empathyデータセットには、微粒な感情応答の分布のためのアノテーションが含まれており、モデルが感情状態の詳細な理解を得ることができる。
Video to Valenceデータセットには、ビデオ間の相対的な快適性のアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-10-18T17:58:25Z) - Vision-Based Activity Recognition in Children with Autism-Related
Behaviors [15.915410623440874]
臨床医や親が子どもの行動を分析するのに役立つ地域型コンピュータビジョンシステムの効果を実証する。
データは、ビデオ中の対象の子供を検出し、背景雑音の影響を低減することで前処理される。
時間的畳み込みモデルの有効性から,ビデオフレームから動作特徴を抽出できる軽量モデルと従来モデルの両方を提案する。
論文 参考訳(メタデータ) (2022-08-08T15:12:27Z) - Detection of ADHD based on Eye Movements during Natural Viewing [3.1890959219836574]
ADHDは神経発達障害であり、臨床専門医が診断する必要がある。
我々は、関連するタスクに対して事前学習を行う、エンドツーエンドのディープラーニングベースのシーケンスモデルを開発する。
この手法は実際にADHDを検出し、関連するベースラインを上回ります。
論文 参考訳(メタデータ) (2022-07-04T12:56:04Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。