論文の概要: Dual-stream Feature Augmentation for Domain Generalization
- arxiv url: http://arxiv.org/abs/2409.04699v1
- Date: Sat, 7 Sep 2024 03:41:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:14:48.229907
- Title: Dual-stream Feature Augmentation for Domain Generalization
- Title(参考訳): 領域一般化のためのデュアルストリーム機能拡張
- Authors: Shanshan Wang, ALuSi, Xun Yang, Ke Xu, Huibin Tan, Xingyi Zhang,
- Abstract要約: 2つの視点からいくつかのハードな特徴を構築することでDFA(Dual-stream Feature Augmentation)法を提案する。
提案手法は,領域一般化のための最先端性能を実現することができる。
- 参考スコア(独自算出の注目度): 16.495752769624872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) task aims to learn a robust model from source domains that could handle the out-of-distribution (OOD) issue. In order to improve the generalization ability of the model in unseen domains, increasing the diversity of training samples is an effective solution. However, existing augmentation approaches always have some limitations. On the one hand, the augmentation manner in most DG methods is not enough as the model may not see the perturbed features in approximate the worst case due to the randomness, thus the transferability in features could not be fully explored. On the other hand, the causality in discriminative features is not involved in these methods, which harms the generalization ability of model due to the spurious correlations. To address these issues, we propose a Dual-stream Feature Augmentation~(DFA) method by constructing some hard features from two perspectives. Firstly, to improve the transferability, we construct some targeted features with domain related augmentation manner. Through the guidance of uncertainty, some hard cross-domain fictitious features are generated to simulate domain shift. Secondly, to take the causality into consideration, the spurious correlated non-causal information is disentangled by an adversarial mask, then the more discriminative features can be extracted through these hard causal related information. Different from previous fixed synthesizing strategy, the two augmentations are integrated into a unified learnable feature disentangle model. Based on these hard features, contrastive learning is employed to keep the semantic consistency and improve the robustness of the model. Extensive experiments on several datasets demonstrated that our approach could achieve state-of-the-art performance for domain generalization. Our code is available at: https://github.com/alusi123/DFA.
- Abstract(参考訳): ドメイン一般化(DG)タスクは、アウト・オブ・ディストリビューション(OOD)問題に対処できるソースドメインから堅牢なモデルを学ぶことを目的としている。
未確認領域におけるモデルの一般化能力を向上させるため、トレーニングサンプルの多様性を高めることが有効な解である。
しかし、既存の拡張アプローチには、常にいくつかの制限がある。
一方、ほとんどのDG法では、乱数性に起因する最悪の場合において、モデルが摂動特徴をほとんど見ていないため、拡張方法では十分ではないため、特徴の伝達性は十分に調べられていない。
一方、識別的特徴の因果関係はこれらの手法には関与せず、素早い相関によるモデルの一般化能力を損なう。
これらの問題に対処するために,2つの視点からいくつかのハードな特徴を構築することでDFA法を提案する。
まず、転送可能性を改善するために、ドメイン関連拡張方式でいくつかのターゲット機能を構築します。
不確実性のガイダンスを通じて、ドメインシフトをシミュレートするために、いくつかのハードクロスドメイン架空の特徴が生成される。
第二に、因果関係を考慮するために、素因果関係の非因果関係情報を対向マスクで切り離し、これらのハード因果関係情報からより識別的特徴を抽出することができる。
従来の固定合成戦略とは異なり、この2つの拡張は、統合学習可能な特徴不整合モデルに統合される。
これらの難しい特徴に基づいて、セマンティックな一貫性を維持し、モデルの堅牢性を向上させるために、対照的な学習が採用されている。
いくつかのデータセットに対する大規模な実験により、我々のアプローチはドメインの一般化のために最先端のパフォーマンスを達成できることを示した。
私たちのコードは、https://github.com/alusi123/DFA.comで利用可能です。
関連論文リスト
- DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation [10.127634263641877]
ラベル付きデータなしで機械学習モデルを新しいドメインに適応させることは、医療画像、自律運転、リモートセンシングといったアプリケーションにおいて重要な課題である。
Source-Free Unsupervised Domain Adaptation (SFUDA)と呼ばれるこのタスクでは、未ラベルのターゲットデータのみを使用して、トレーニング済みのモデルをターゲットドメインに適応させる。
既存のSFUDAメソッドは、しばしば単一モデルアーキテクチャに依存し、ターゲットドメインにおける不確実性と可変性に悩まされる。
本稿では、2重モデルアーキテクチャを利用した新しいSFUDAフレームワークDRIVEを提案する。
論文 参考訳(メタデータ) (2024-11-24T20:35:04Z) - Causality-inspired Latent Feature Augmentation for Single Domain Generalization [13.735443005394773]
単一ドメインの一般化(Single-DG)は、単一のトレーニングドメインのみを持つ一般化可能なモデルを開発し、他の未知のターゲットドメインでうまく機能させることを目的としている。
ドメイン・ハングリー構成の下で、ソース・ドメインのカバレッジを拡大し、異なる分布にまたがる固有の因果的特徴を見つける方法がモデルの一般化能力を高める鍵となる。
本稿では、因果学習と介入に基づく特徴レベルの変換のメタ知識を学習することで、単一DGの因果性に着想を得た潜在機能拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T02:42:25Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
ドメイン一般化(DG)は、不変の機能を学ぶことによって、目に見えないシナリオに優れた機械学習モデルを作成するための取り組みである。
モデルにドメインレベルとタスク固有の特性を補足する新しい手法を提案する。
このアプローチは、特定の特徴から不変な特徴をより効果的に分離し、一般化を促進することを目的としている。
論文 参考訳(メタデータ) (2024-01-18T04:23:21Z) - Learning Generalizable Models via Disentangling Spurious and Enhancing
Potential Correlations [28.38895118573957]
ドメイン一般化 (Domain Generalization, DG) は、任意の未知のターゲットドメインに適切に一般化できるように、複数のソースドメイン上でモデルをトレーニングすることを目的としている。
サンプルや機能など、複数の視点を採用することは、効果的であることが証明されている。
本稿では,サンプルと特徴の両方の観点から,ドメイン不変表現の獲得を促すことによって,モデルの一般化能力の向上に焦点をあてる。
論文 参考訳(メタデータ) (2024-01-11T09:00:22Z) - A Contrastive Variational Graph Auto-Encoder for Node Clustering [10.52321770126932]
最先端のクラスタリング手法には多くの課題がある。
既存のVGAEは、推論と生成モデルの相違を考慮していない。
私たちのソリューションには、フィーチャーランダムネスとフィーチャードリフトのトレードオフを制御する2つのメカニズムがあります。
論文 参考訳(メタデータ) (2023-12-28T05:07:57Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Style Interleaved Learning for Generalizable Person Re-identification [69.03539634477637]
DG ReIDトレーニングのための新しいスタイルインターリーブラーニング(IL)フレームワークを提案する。
従来の学習戦略とは異なり、ILには2つの前方伝播と1つの後方伝播が組み込まれている。
我々のモデルはDG ReIDの大規模ベンチマークにおいて最先端の手法を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-07-07T07:41:32Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z) - Learning Domain Invariant Representations for Generalizable Person
Re-Identification [71.35292121563491]
ReID(Generalizable person Re-Identification)は、最近のコンピュータビジョンコミュニティで注目を集めている。
DIR-ReID(Domain Invariant Representations for Generalizable Person Re-Identification)という新しい一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T18:59:48Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
本研究では,不均衡なドメイン間学習における公平性問題に対処するTowards Fair Knowledge Transferフレームワークを提案する。
具体的には、新規なクロスドメインミックスアップ生成を利用して、ターゲット情報でマイノリティソースセットを増強し、公正性を高める。
本モデルでは,2つのベンチマークで全体の精度を20%以上向上させる。
論文 参考訳(メタデータ) (2020-10-23T06:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。