LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs
- URL: http://arxiv.org/abs/2409.04744v1
- Date: Sat, 7 Sep 2024 07:40:43 GMT
- Title: LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs
- Authors: Yongxin Deng, Xihe Qiu, Xiaoyu Tan, Wei Chu, Yinghui Xu,
- Abstract summary: We introduce textbfLanguage textbfModel textbfGuided textbfTrade-offs (i.e., textbfLMGT), a novel, sample-efficient framework for Reinforcement Learning.
- Score: 27.014415210732103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The uncertainty inherent in the environmental transition model of Reinforcement Learning (RL) necessitates a careful balance between exploration and exploitation to optimize the use of computational resources for accurately estimating an agent's expected reward. Achieving balance in control systems is particularly challenging in scenarios with sparse rewards. However, given the extensive prior knowledge available for many environments, it is redundant to begin learning from scratch in such settings. To address this, we introduce \textbf{L}anguage \textbf{M}odel \textbf{G}uided \textbf{T}rade-offs (i.e., \textbf{LMGT}), a novel, sample-efficient framework that leverages the comprehensive prior knowledge embedded in Large Language Models (LLMs) and their adeptness at processing non-standard data forms, such as wiki tutorials. LMGT proficiently manages the exploration-exploitation trade-off by employing reward shifts guided by LLMs, which direct agents' exploration endeavors, thereby improving sample efficiency. We have thoroughly tested LMGT across various RL tasks and deployed it in industrial-grade RL recommendation systems, where it consistently outperforms baseline methods. The results indicate that our framework can significantly reduce the time cost required during the training phase in RL.
Related papers
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
arXiv Detail & Related papers (2024-10-22T15:59:58Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Teaching Large Language Models to Reason with Reinforcement Learning [38.17625148525193]
Reinforcement Learning from Human Feedback (textbfRLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences.
Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback.
arXiv Detail & Related papers (2024-03-07T16:36:29Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development.
This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices.
arXiv Detail & Related papers (2024-02-26T18:59:03Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Reinforcement Learning from LLM Feedback to Counteract Goal
Misgeneralization [0.0]
We introduce a method to address goal misgeneralization in reinforcement learning (RL)
Goal misgeneralization occurs when an agent retains its capabilities out-of-distribution yet pursues a proxy rather than the intended one.
This study demonstrates how the Large Language Model can efficiently supervise RL agents.
arXiv Detail & Related papers (2024-01-14T01:09:48Z) - Unleashing the Power of Pre-trained Language Models for Offline
Reinforcement Learning [54.682106515794864]
offline reinforcement learning (RL) aims to find a near-optimal policy using pre-collected datasets.
This paper introduces $textbfLanguage Models for $textbfMo$tion Control ($textbfLaMo$), a general framework based on Decision Transformers to use pre-trained Language Models (LMs) for offline RL.
Empirical results indicate $textbfLaMo$ achieves state-of-the-art performance in sparse-reward tasks.
arXiv Detail & Related papers (2023-10-31T16:24:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.