Unsupervised Adaptive Normalization
- URL: http://arxiv.org/abs/2409.04757v1
- Date: Sat, 7 Sep 2024 08:14:11 GMT
- Title: Unsupervised Adaptive Normalization
- Authors: Bilal Faye, Hanane Azzag, Mustapha Lebbah, Fangchen Fang,
- Abstract summary: Unsupervised Adaptive Normalization (UAN) is an innovative algorithm that seamlessly integrates clustering for normalization with deep neural network learning.
UAN outperforms the classical methods by adapting to the target task and is effective in classification, and domain adaptation.
- Score: 0.07499722271664146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have become a staple in solving intricate problems, proving their mettle in a wide array of applications. However, their training process is often hampered by shifting activation distributions during backpropagation, resulting in unstable gradients. Batch Normalization (BN) addresses this issue by normalizing activations, which allows for the use of higher learning rates. Despite its benefits, BN is not without drawbacks, including its dependence on mini-batch size and the presumption of a uniform distribution of samples. To overcome this, several alternatives have been proposed, such as Layer Normalization, Group Normalization, and Mixture Normalization. These methods may still struggle to adapt to the dynamic distributions of neuron activations during the learning process. To bridge this gap, we introduce Unsupervised Adaptive Normalization (UAN), an innovative algorithm that seamlessly integrates clustering for normalization with deep neural network learning in a singular process. UAN executes clustering using the Gaussian mixture model, determining parameters for each identified cluster, by normalizing neuron activations. These parameters are concurrently updated as weights in the deep neural network, aligning with the specific requirements of the target task during backpropagation. This unified approach of clustering and normalization, underpinned by neuron activation normalization, fosters an adaptive data representation that is specifically tailored to the target task. This adaptive feature of UAN enhances gradient stability, resulting in faster learning and augmented neural network performance. UAN outperforms the classical methods by adapting to the target task and is effective in classification, and domain adaptation.
Related papers
- Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
In this article, we analyze the dynamical, computational, and learning properties of adaptive LIF neurons and networks thereof.
We show that the superiority of networks of adaptive LIF neurons extends to the prediction and generation of complex time series.
arXiv Detail & Related papers (2024-08-14T12:49:58Z) - Sparse-Input Neural Network using Group Concave Regularization [10.103025766129006]
Simultaneous feature selection and non-linear function estimation are challenging in neural networks.
We propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings.
arXiv Detail & Related papers (2023-07-01T13:47:09Z) - Normalization-Equivariant Neural Networks with Application to Image
Denoising [3.591122855617648]
We propose a methodology for adapting existing neural networks so that normalization-equivariance holds by design.
Our main claim is that not only ordinary convolutional layers, but also all activation functions, should be completely removed from neural networks.
Experimental results in image denoising show that normalization-equivariant neural networks, in addition to their better conditioning, also provide much better generalization across noise levels.
arXiv Detail & Related papers (2023-06-08T08:42:08Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Correct Normalization Matters: Understanding the Effect of Normalization
On Deep Neural Network Models For Click-Through Rate Prediction [3.201333208812837]
We propose a new and effective normalization approaches based on LayerNorm named variance only LayerNorm(VO-LN) in this work.
We find that the variance of normalization plays the main role and give an explanation in this work.
arXiv Detail & Related papers (2020-06-23T04:35:22Z) - Optimization Theory for ReLU Neural Networks Trained with Normalization
Layers [82.61117235807606]
The success of deep neural networks in part due to the use of normalization layers.
Our analysis shows how the introduction of normalization changes the landscape and can enable faster activation.
arXiv Detail & Related papers (2020-06-11T23:55:54Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.