Normalized Convolutional Neural Network
- URL: http://arxiv.org/abs/2005.05274v4
- Date: Wed, 02 Apr 2025 08:53:46 GMT
- Title: Normalized Convolutional Neural Network
- Authors: Dongsuk Kim, Geonhee Lee, Myungjae Lee, Shin Uk Kang, Dongmin Kim,
- Abstract summary: We introduce a Normalized Convolutional Neural Layer, a novel approach to normalization in convolutional networks.<n>This layer normalizes the rows of the im2col matrix during convolution, making it inherently adaptive to sliced inputs and better aligned with kernel structures.
- Score: 3.9686028140278897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a Normalized Convolutional Neural Layer, a novel approach to normalization in convolutional networks. Unlike conventional methods, this layer normalizes the rows of the im2col matrix during convolution, making it inherently adaptive to sliced inputs and better aligned with kernel structures. This distinctive approach differentiates it from standard normalization techniques and prevents direct integration into existing deep learning frameworks optimized for traditional convolution operations. Our method has a universal property, making it applicable to any deep learning task involving convolutional layers. By inherently normalizing within the convolution process, it serves as a convolutional adaptation of Self-Normalizing Networks, maintaining their core principles without requiring additional normalization layers. Notably, in micro-batch training scenarios, it consistently outperforms other batch-independent normalization methods. This performance boost arises from standardizing the rows of the im2col matrix, which theoretically leads to a smoother loss gradient and improved training stability.
Related papers
- Smoothed Normalization for Efficient Distributed Private Optimization [54.197255548244705]
Federated learning enables machine learning models with privacy of participants.
There is no differentially private distributed method for training, non-feedback problems.
We introduce a new distributed algorithm $alpha$-$sf NormEC$ with provable convergence guarantees.
arXiv Detail & Related papers (2025-02-19T07:10:32Z) - Unsupervised Adaptive Normalization [0.07499722271664146]
Unsupervised Adaptive Normalization (UAN) is an innovative algorithm that seamlessly integrates clustering for normalization with deep neural network learning.
UAN outperforms the classical methods by adapting to the target task and is effective in classification, and domain adaptation.
arXiv Detail & Related papers (2024-09-07T08:14:11Z) - Kernel vs. Kernel: Exploring How the Data Structure Affects Neural Collapse [9.975341265604577]
"Neural Collapse" is the decrease in the within class variability of the network's deepest features, dubbed as NC1.
We provide a kernel-based analysis that does not suffer from this limitation.
We show that the NTK does not represent more collapsed features than the NNGP for prototypical data models.
arXiv Detail & Related papers (2024-06-04T08:33:56Z) - Enhancing Neural Network Representations with Prior Knowledge-Based Normalization [0.07499722271664146]
We introduce a new approach to multi-mode normalization that leverages prior knowledge to improve neural network representations.
Our methods demonstrate superior convergence and performance across tasks in image classification, domain adaptation, and image generation.
arXiv Detail & Related papers (2024-03-25T14:17:38Z) - Optimal ANN-SNN Conversion with Group Neurons [39.14228133571838]
Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks.
The lack of effective learning algorithms remains a challenge for SNNs.
We introduce a novel type of neuron called Group Neurons (GNs)
arXiv Detail & Related papers (2024-02-29T11:41:12Z) - The Implicit Bias of Batch Normalization in Linear Models and Two-layer
Linear Convolutional Neural Networks [117.93273337740442]
We show that gradient descent converges to a uniform margin classifier on the training data with an $exp(-Omega(log2 t))$ convergence rate.
We also show that batch normalization has an implicit bias towards a patch-wise uniform margin.
arXiv Detail & Related papers (2023-06-20T16:58:00Z) - Context Normalization Layer with Applications [0.1499944454332829]
This study proposes a new normalization technique, called context normalization, for image data.
It adjusts the scaling of features based on the characteristics of each sample, which improves the model's convergence speed and performance.
The effectiveness of context normalization is demonstrated on various datasets, and its performance is compared to other standard normalization techniques.
arXiv Detail & Related papers (2023-03-14T06:38:17Z) - GMConv: Modulating Effective Receptive Fields for Convolutional Kernels [52.50351140755224]
In convolutional neural networks, the convolutions are performed using a square kernel with a fixed N $times$ N receptive field (RF)
Inspired by the property that ERFs typically exhibit a Gaussian distribution, we propose a Gaussian Mask convolutional kernel (GMConv) in this work.
Our GMConv can directly replace the standard convolutions in existing CNNs and can be easily trained end-to-end by standard back-propagation.
arXiv Detail & Related papers (2023-02-09T10:17:17Z) - Batch Layer Normalization, A new normalization layer for CNNs and RNN [0.0]
This study introduces a new normalization layer termed Batch Layer Normalization (BLN)
As a combined version of batch and layer normalization, BLN adaptively puts appropriate weight on mini-batch and feature normalization based on the inverse size of mini-batches.
Test results indicate the application potential of BLN and its faster convergence than batch normalization and layer normalization in both Convolutional and Recurrent Neural Networks.
arXiv Detail & Related papers (2022-09-19T10:12:51Z) - Empowering GNNs via Edge-Aware Weisfeiler-Leman Algorithm [79.68451803954751]
Message passing graph neural networks (GNNs) are known to have their expressiveness upper-bounded by 1-dimensional Weisfeiler-Leman (1-WL) algorithm.
We propose a general and provably powerful GNN framework that preserves the scalability of the message passing scheme.
arXiv Detail & Related papers (2022-06-04T21:37:59Z) - A Unified Weight Initialization Paradigm for Tensorial Convolutional
Neural Networks [17.71332705005499]
Convolutional Neural Networks (TCNNs) have attracted much research attention for their power in reducing model parameters or enhancing the ability.
exploration of TCNNs is hindered even from weight cleanup methods.
We propose a universal weight cleanup paradigm, which generalizes Xavier and Kaiming methods and can be widely applicable to arbitrary TCNNs.
Our paradigm can stabilize the training of TCNNs, leading to faster convergence and better results.
arXiv Detail & Related papers (2022-05-28T13:31:24Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - iRNN: Integer-only Recurrent Neural Network [0.8766022970635899]
We present a quantization-aware training method for obtaining a highly accurate integer-only recurrent neural network (iRNN)
Our iRNN maintains similar performance as its full-precision counterpart, their deployment on smartphones improves the runtime performance by $2times$, and reduces the model size by $4times$.
arXiv Detail & Related papers (2021-09-20T20:17:40Z) - Rethinking Skip Connection with Layer Normalization in Transformers and
ResNets [49.87919454950763]
Skip connection is a widely-used technique to improve the performance of deep neural networks.
In this work, we investigate how the scale factors in the effectiveness of the skip connection.
arXiv Detail & Related papers (2021-05-15T11:44:49Z) - "BNN - BN = ?": Training Binary Neural Networks without Batch
Normalization [92.23297927690149]
Batch normalization (BN) is a key facilitator and considered essential for state-of-the-art binary neural networks (BNN)
We extend their framework to training BNNs, and for the first time demonstrate that BNs can be completed removed from BNN training and inference regimes.
arXiv Detail & Related papers (2021-04-16T16:46:57Z) - Convolutional Normalization: Improving Deep Convolutional Network
Robustness and Training [44.66478612082257]
Normalization techniques have become a basic component in modern convolutional neural networks (ConvNets)
We introduce a simple and efficient convolutional normalization'' method that can fully exploit the convolutional structure in the Fourier domain.
We show that convolutional normalization can reduce the layerwise spectral norm of the weight matrices and hence improve the Lipschitzness of the network.
arXiv Detail & Related papers (2021-03-01T00:33:04Z) - Kernel Based Progressive Distillation for Adder Neural Networks [71.731127378807]
Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption.
There is an accuracy drop when replacing all convolution filters by adder filters.
We present a novel method for further improving the performance of ANNs without increasing the trainable parameters.
arXiv Detail & Related papers (2020-09-28T03:29:19Z) - Optimization Theory for ReLU Neural Networks Trained with Normalization
Layers [82.61117235807606]
The success of deep neural networks in part due to the use of normalization layers.
Our analysis shows how the introduction of normalization changes the landscape and can enable faster activation.
arXiv Detail & Related papers (2020-06-11T23:55:54Z) - Gradient Centralization: A New Optimization Technique for Deep Neural
Networks [74.935141515523]
gradient centralization (GC) operates directly on gradients by centralizing the gradient vectors to have zero mean.
GC can be viewed as a projected gradient descent method with a constrained loss function.
GC is very simple to implement and can be easily embedded into existing gradient based DNNs with only one line of code.
arXiv Detail & Related papers (2020-04-03T10:25:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.