FedModule: A Modular Federated Learning Framework
- URL: http://arxiv.org/abs/2409.04849v1
- Date: Sat, 7 Sep 2024 15:03:12 GMT
- Title: FedModule: A Modular Federated Learning Framework
- Authors: Chuyi Chen, Zhe Zhang, Yanchao Zhao,
- Abstract summary: Federated learning (FL) has been widely adopted across various applications, such as healthcare, finance, and smart cities.
This paper introduces FedModule, a flexible and FL experimental framework.
FedModule adheres to the "one code, all scenarios" principle and employs a modular design that breaks the FL process into individual components.
- Score: 5.872098693249397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has been widely adopted across various applications, such as healthcare, finance, and smart cities. However, as experimental scenarios become more complex, existing FL frameworks and benchmarks have struggled to keep pace. This paper introduces FedModule, a flexible and extensible FL experimental framework that has been open-sourced to support diverse FL paradigms and provide comprehensive benchmarks for complex experimental scenarios. FedModule adheres to the "one code, all scenarios" principle and employs a modular design that breaks the FL process into individual components, allowing for the seamless integration of different FL paradigms. The framework supports synchronous, asynchronous, and personalized federated learning, with over 20 implemented algorithms. Experiments conducted on public datasets demonstrate the flexibility and extensibility of FedModule. The framework offers multiple execution modes-including linear, threaded, process-based, and distributed-enabling users to tailor their setups to various experimental needs. Additionally, FedModule provides extensive logging and testing capabilities, which facilitate detailed performance analysis of FL algorithms. Comparative evaluations against existing FL toolkits, such as TensorFlow Federated, PySyft, Flower, and FLGo, highlight FedModule's superior scalability, flexibility, and comprehensive benchmark support. By addressing the limitations of current FL frameworks, FedModule marks a significant advancement in FL experimentation, providing researchers and practitioners with a robust tool for developing and evaluating FL algorithms across a wide range of scenarios.
Related papers
- Supercharging Federated Learning with Flower and NVIDIA FLARE [44.51788032283202]
Open-source systems, such as Flower and NVIDIA FLARE, have been developed in recent years.
We describe our initial integration of both frameworks and show how they can work together to supercharge the FL ecosystem as a whole.
arXiv Detail & Related papers (2024-05-21T21:22:16Z) - FLGo: A Fully Customizable Federated Learning Platform [23.09038374160798]
We propose a novel lightweight Federated learning platform called FLGo.
Our platform offers 40+ benchmarks, 20+ algorithms, and 2 system simulators as out-of-the-box plugins.
We also develop a range of experimental tools, including parallel acceleration, experiment tracker and parameters auto-tuning.
arXiv Detail & Related papers (2023-06-21T07:55:29Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - ModularFed: Leveraging Modularity in Federated Learning Frameworks [8.139264167572213]
We propose a research-focused framework that addresses the complexity of Federated Learning (FL) implementations.
Within this architecture, protocols are blueprints that strictly define the framework's components' design.
Our protocols aim to enable modularity in FL, supporting third-party plug-and-play architecture and dynamic simulators.
arXiv Detail & Related papers (2022-10-31T10:21:19Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models.
We propose a novel cross-silo dataset suite focused on healthcare, FLamby, to bridge the gap between theory and practice of cross-silo FL.
Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research.
arXiv Detail & Related papers (2022-10-10T12:17:30Z) - UniFed: All-In-One Federated Learning Platform to Unify Open-Source
Frameworks [53.20176108643942]
We present UniFed, the first unified platform for standardizing open-source Federated Learning (FL) frameworks.
UniFed streamlines the end-to-end workflow for distributed experimentation and deployment, encompassing 11 popular open-source FL frameworks.
We evaluate and compare 11 popular FL frameworks from the perspectives of functionality, privacy protection, and performance.
arXiv Detail & Related papers (2022-07-21T05:03:04Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
We propose a novel and comprehensive federated learning platform, named FederatedScope, which is based on a message-oriented framework.
Compared to the procedural framework, the proposed message-oriented framework is more flexible to express heterogeneous message exchange.
We conduct a series of experiments on the provided easy-to-use and comprehensive FL benchmarks to validate the correctness and efficiency of FederatedScope.
arXiv Detail & Related papers (2022-04-11T11:24:21Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Flower: A Friendly Federated Learning Research Framework [18.54638343801354]
Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared prediction model.
We present Flower -- a comprehensive FL framework that distinguishes itself from existing platforms by offering new facilities to execute large-scale FL experiments.
arXiv Detail & Related papers (2020-07-28T17:59:07Z) - FedML: A Research Library and Benchmark for Federated Machine Learning [55.09054608875831]
Federated learning (FL) is a rapidly growing research field in machine learning.
Existing FL libraries cannot adequately support diverse algorithmic development.
We introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison.
arXiv Detail & Related papers (2020-07-27T13:02:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.