Supercharging Federated Learning with Flower and NVIDIA FLARE
- URL: http://arxiv.org/abs/2407.00031v2
- Date: Mon, 22 Jul 2024 07:01:48 GMT
- Title: Supercharging Federated Learning with Flower and NVIDIA FLARE
- Authors: Holger R. Roth, Daniel J. Beutel, Yan Cheng, Javier Fernandez Marques, Heng Pan, Chester Chen, Zhihong Zhang, Yuhong Wen, Sean Yang, Isaac, Yang, Yuan-Ting Hsieh, Ziyue Xu, Daguang Xu, Nicholas D. Lane, Andrew Feng,
- Abstract summary: Open-source systems, such as Flower and NVIDIA FLARE, have been developed in recent years.
We describe our initial integration of both frameworks and show how they can work together to supercharge the FL ecosystem as a whole.
- Score: 44.51788032283202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several open-source systems, such as Flower and NVIDIA FLARE, have been developed in recent years while focusing on different aspects of federated learning (FL). Flower is dedicated to implementing a cohesive approach to FL, analytics, and evaluation. Over time, Flower has cultivated extensive strategies and algorithms tailored for FL application development, fostering a vibrant FL community in research and industry. Conversely, FLARE has prioritized the creation of an enterprise-ready, resilient runtime environment explicitly designed for FL applications in production environments. In this paper, we describe our initial integration of both frameworks and show how they can work together to supercharge the FL ecosystem as a whole. Through the seamless integration of Flower and FLARE, applications crafted within the Flower framework can effortlessly operate within the FLARE runtime environment without necessitating any modifications. This initial integration streamlines the process, eliminating complexities and ensuring smooth interoperability between the two platforms, thus enhancing the overall efficiency and accessibility of FL applications.
Related papers
- Free-Rider and Conflict Aware Collaboration Formation for Cross-Silo Federated Learning [32.35705737668307]
Federated learning (FL) is a machine learning paradigm that allows multiple FL participants to collaborate on training models without sharing private data.
We propose an optimal FL collaboration formation strategy -- FedEgoists -- which ensures that a FL-PT can benefit from FL if and only if it benefits the FL ecosystem.
We theoretically prove that the FL-PT coalitions formed are optimal since no coalitions can collaborate together to improve the utility of any of their members.
arXiv Detail & Related papers (2024-10-25T06:13:26Z) - Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework [1.4206132527980742]
Federated learning (FL) is a distributed machine learning paradigm enabling collaborative model training while preserving data privacy.
We present the recent advances in developing APPFL, a framework and benchmarking suite for federated learning.
We demonstrate the capabilities of APPFL through extensive experiments evaluating various aspects of FL, including communication efficiency, privacy preservation, computational performance, and resource utilization.
arXiv Detail & Related papers (2024-09-17T22:20:26Z) - FedModule: A Modular Federated Learning Framework [5.872098693249397]
Federated learning (FL) has been widely adopted across various applications, such as healthcare, finance, and smart cities.
This paper introduces FedModule, a flexible and FL experimental framework.
FedModule adheres to the "one code, all scenarios" principle and employs a modular design that breaks the FL process into individual components.
arXiv Detail & Related papers (2024-09-07T15:03:12Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - ModularFed: Leveraging Modularity in Federated Learning Frameworks [8.139264167572213]
We propose a research-focused framework that addresses the complexity of Federated Learning (FL) implementations.
Within this architecture, protocols are blueprints that strictly define the framework's components' design.
Our protocols aim to enable modularity in FL, supporting third-party plug-and-play architecture and dynamic simulators.
arXiv Detail & Related papers (2022-10-31T10:21:19Z) - UniFed: All-In-One Federated Learning Platform to Unify Open-Source
Frameworks [53.20176108643942]
We present UniFed, the first unified platform for standardizing open-source Federated Learning (FL) frameworks.
UniFed streamlines the end-to-end workflow for distributed experimentation and deployment, encompassing 11 popular open-source FL frameworks.
We evaluate and compare 11 popular FL frameworks from the perspectives of functionality, privacy protection, and performance.
arXiv Detail & Related papers (2022-07-21T05:03:04Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
We propose a novel and comprehensive federated learning platform, named FederatedScope, which is based on a message-oriented framework.
Compared to the procedural framework, the proposed message-oriented framework is more flexible to express heterogeneous message exchange.
We conduct a series of experiments on the provided easy-to-use and comprehensive FL benchmarks to validate the correctness and efficiency of FederatedScope.
arXiv Detail & Related papers (2022-04-11T11:24:21Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Flower: A Friendly Federated Learning Research Framework [18.54638343801354]
Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared prediction model.
We present Flower -- a comprehensive FL framework that distinguishes itself from existing platforms by offering new facilities to execute large-scale FL experiments.
arXiv Detail & Related papers (2020-07-28T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.