論文の概要: Plug-and-Hide: Provable and Adjustable Diffusion Generative Steganography
- arxiv url: http://arxiv.org/abs/2409.04878v1
- Date: Sat, 7 Sep 2024 18:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:20:37.036212
- Title: Plug-and-Hide: Provable and Adjustable Diffusion Generative Steganography
- Title(参考訳): Plug-and-Hide: 可能で調整可能な拡散生成ステガノグラフィ
- Authors: Jiahao Zhu, Zixuan Chen, Lingxiao Yang, Xiaohua Xie, Yi Zhou,
- Abstract要約: Generative Steganography (GS) は、生成モデルを用いて、隠蔽画像に頼らずにメッセージを隠蔽する手法である。
GSアルゴリズムは拡散モデル(DM)の強力な生成能力を利用して高忠実度ステゴ画像を生成する。
本稿では,DGS(Diffusion Generative Steganography)設定における画像品質,ステガノグラフィセキュリティ,メッセージ抽出精度のトレードオフを再考する。
- 参考スコア(独自算出の注目度): 40.357567971092564
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generative Steganography (GS) is a novel technique that utilizes generative models to conceal messages without relying on cover images. Contemporary GS algorithms leverage the powerful generative capabilities of Diffusion Models (DMs) to create high-fidelity stego images. However, these algorithms, while yielding relatively satisfactory generation outcomes and message extraction accuracy, significantly alter modifications to the initial Gaussian noise of DMs, thereby compromising steganographic security. In this paper, we rethink the trade-off among image quality, steganographic security, and message extraction accuracy within Diffusion Generative Steganography (DGS) settings. Our findings reveal that the normality of initial noise of DMs is crucial to these factors and can offer theoretically grounded guidance for DGS design. Based on this insight, we propose a Provable and Adjustable Message Mapping (PA-B2G) approach. It can, on one hand, theoretically guarantee reversible encoding of bit messages from arbitrary distributions into standard Gaussian noise for DMs. On the other hand, its adjustability provides a more natural and fine-grained way to trade off image quality, steganographic security, and message extraction accuracy. By integrating PA-B2G with a probability flow ordinary differential equation, we establish an invertible mapping between secret messages and stego images. PA-B2G can be seamlessly incorporated with most mainstream DMs, such as the Stable Diffusion, without necessitating additional training or fine-tuning. Comprehensive experiments corroborate our theoretical insights regarding the trade-off in DGS settings and demonstrate the effectiveness of our DGS algorithm in producing high-quality stego images while preserving desired levels of steganographic security and extraction accuracy.
- Abstract(参考訳): Generative Steganography (GS) は、生成モデルを利用して、隠蔽画像に頼らずにメッセージを隠蔽する新しい技術である。
現代のGSアルゴリズムは拡散モデル(DM)の強力な生成能力を利用して高忠実度ステゴ画像を生成する。
しかし, これらのアルゴリズムは, 比較的良好な生成結果とメッセージ抽出精度を得る一方で, DMの初期ガウスノイズに著しく変化し, ステガノグラフィーの安全性が向上した。
本稿では,DGS(Diffusion Generative Steganography)設定における画像品質,ステガノグラフィセキュリティ,メッセージ抽出精度のトレードオフを再考する。
以上の結果から,DMの初期ノイズの正常性はこれらの要因に不可欠であり,DGS設計の理論的根拠を与えることができることがわかった。
この知見に基づき、我々はProvable and Adjustable Message Mapping (PA-B2G)アプローチを提案する。
一方、理論上は任意の分布からのビットメッセージの可逆符号化をDMの標準ガウスノイズに保証することができる。
一方、その調整性は、画像の品質、ステガノグラフィーのセキュリティ、メッセージ抽出の精度をトレードオフする、より自然できめ細かな方法を提供する。
確率フロー常微分方程式とPA-B2Gを統合することにより、秘密メッセージとステゴ画像間の可逆写像を確立する。
PA-B2Gは、訓練や微調整を必要とせず、安定拡散のようなほとんどの主流のDMとシームレスに組み込むことができる。
総合的な実験は、DGS設定のトレードオフに関する理論的知見と、所望のレベルのステガノグラフィのセキュリティと抽出精度を維持しつつ、高品質なステゴ画像の生成におけるDGSアルゴリズムの有効性を裏付けるものである。
関連論文リスト
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Generative Steganographic Flow [39.64952038237487]
ジェネレーティブ・ステガノグラフィー(GS)は、シークレットデータから直接ステゴメディアを生成する新しいデータ隠蔽方式である。
既存のGSメソッドは、パフォーマンスが劣るとして一般的に批判されている。
我々は,新しいフローベースGSアプローチ,ジェネレーティブ・ステレオグラフィー・フロー(GSF)を提案する。
論文 参考訳(メタデータ) (2023-05-10T02:02:20Z) - Generative Steganography Diffusion [42.60159212701425]
Generative steganography (GS) はシークレットデータから直接ステゴ画像を生成する新しい技術である。
既存のGSメソッドでは、ネットワークの可逆性が欠如しているため、隠されたシークレットデータが完全に復元できない。
我々は「StegoDiffusion」と呼ばれる可逆拡散モデルを考案し、GSD(Generative Steganography Diffusion)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-05T12:29:22Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - A Method for Evaluating Deep Generative Models of Images via Assessing
the Reproduction of High-order Spatial Context [9.00018232117916]
GAN(Generative Adversarial Network)は、広く使われているDGMの一種である。
本稿では,2つのGANアーキテクチャによって出力される画像の客観的なテストについて述べる。
我々は、訓練されたGANによって生成した画像の特徴を再現できるいくつかのコンテキストモデル(SCM)を設計した。
論文 参考訳(メタデータ) (2021-11-24T15:58:10Z) - Label Geometry Aware Discriminator for Conditional Generative Networks [40.89719383597279]
条件付きGenerative Adversarial Networks(GAN)は、目的のターゲットクラスで高画質の画像を生成することができます。
これらの合成画像は、画像分類などの下流監督タスクを改善するために必ずしも役に立たない。
論文 参考訳(メタデータ) (2021-05-12T08:17:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。