論文の概要: Defeasible Reasoning on Concepts
- arxiv url: http://arxiv.org/abs/2409.04887v1
- Date: Sat, 7 Sep 2024 19:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:20:37.027544
- Title: Defeasible Reasoning on Concepts
- Title(参考訳): 概念に関する決定的推論
- Authors: Yiwen Ding, Krishna Manoorkar, Ni Wayan Switrayni, Ruoding Wang,
- Abstract要約: 我々は、KLMフレームワークにおける概念のデファシブルな推論を開発するための第一歩を踏み出した。
本稿では、累積推論系CとループCLを用いた累積推論系の一般化を概念的設定に定義する。
また、累積モデル、累積順序モデル、概念的設定に対する優先モデルも一般化する。
- 参考スコア(独自算出の注目度): 1.2291211500782906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we take first steps toward developing defeasible reasoning on concepts in KLM framework. We define generalizations of cumulative reasoning system C and cumulative reasoning system with loop CL to conceptual setting. We also generalize cumulative models, cumulative ordered models, and preferential models to conceptual setting and show the soundness and completeness results for these models.
- Abstract(参考訳): 本稿では,KLMフレームワークにおける概念のデファシブル推論の開発に向けて,第一歩を踏み出す。
本稿では、累積推論系CとループCLを用いた累積推論系の一般化を概念的設定に定義する。
また, 累積モデル, 累積順序モデル, 優先モデルも一般化し, それらのモデルの音響性と完全性を示す。
関連論文リスト
- The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Evaluating Readability and Faithfulness of Concept-based Explanations [35.48852504832633]
概念に基づく説明は、大規模言語モデルによって学習された高レベルのパターンを説明するための有望な道として現れます。
現在の手法は、統一的な形式化を欠いた異なる視点から概念にアプローチする。
これにより、概念の中核となる尺度、すなわち忠実さや可読性を評価するのが難しくなります。
論文 参考訳(メタデータ) (2024-04-29T09:20:25Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
本稿では、線形性、再帰性、類似性という3つの自然な公理を満たす概念的説明へのアプローチを提案する。
次に、従来の概念的説明手法とのつながりを確立し、それらの意味の異なる意味についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-12T20:53:35Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、高レベルの概念セットを使用して予測を構築し、説明することによって、ニューラルネットワークの不透明さに対処する。
近年の研究では、介入効果は概念が介入される順序に大きく依存していることが示されている。
IntCEM(Intervention-Aware Concept Embedding Model)は,テスト時間介入に対するモデルの受容性を改善する新しいCBMアーキテクチャとトレーニングパラダイムである。
論文 参考訳(メタデータ) (2023-09-29T02:04:24Z) - On the Equivalence of Consistency-Type Models: Consistency Models,
Consistent Diffusion Models, and Fokker-Planck Regularization [68.13034137660334]
本稿では,異なる目的に対する拡散モデルの拡張を目的とした,最近の3つの一貫性の概念間の理論的関連性を提案する。
私たちの洞察は、一貫性型モデルのためのより包括的で包括的なフレームワークの可能性を提供します。
論文 参考訳(メタデータ) (2023-06-01T05:57:40Z) - Multi-dimensional concept discovery (MCD): A unifying framework with
completeness guarantees [1.9465727478912072]
本稿では,概念レベルの完全性関係を満たす従来のアプローチの拡張として,多次元概念発見(MCD)を提案する。
より制約のある概念定義に対するMDDの優位性を実証的に実証する。
論文 参考訳(メタデータ) (2023-01-27T18:53:19Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Toward a Unified Framework for Debugging Gray-box Models [28.44179818430489]
概念ベースグレーボックスモデル(GBM)について検討する。
これらのモデルは、入力に現れるタスク関連概念を取得し、その後、概念アクティベーションを集約して予測を計算する。
この研究は、GBMにおいて、概念と集約関数の両方が異なるバグによって影響を受けるという観察に由来する。
論文 参考訳(メタデータ) (2021-09-23T06:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。