UMOD: A Novel and Effective Urban Metro Origin-Destination Flow Prediction Method
- URL: http://arxiv.org/abs/2409.04942v1
- Date: Sun, 8 Sep 2024 01:44:46 GMT
- Title: UMOD: A Novel and Effective Urban Metro Origin-Destination Flow Prediction Method
- Authors: Peng Xie, Minbo Ma, Bin Wang, Junbo Zhang, Tianrui Li,
- Abstract summary: We propose an effective urban metro flow prediction method (UMOD) comprising three core modules.
The data embedding module projects raw OD pair inputs into hidden space representations.
The temporal and spatial relation modules are processed by the temporal and spatial relation modules to capture both inter-pair and intra-pair OD-temporal dependencies.
- Score: 18.026364560086954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of metro Origin-Destination (OD) flow is essential for the development of intelligent transportation systems and effective urban traffic management. Existing approaches typically either predict passenger outflow of departure stations or inflow of destination stations. However, we argue that travelers generally have clearly defined departure and arrival stations, making these OD pairs inherently interconnected. Consequently, considering OD pairs as a unified entity more accurately reflects actual metro travel patterns and allows for analyzing potential spatio-temporal correlations between different OD pairs. To address these challenges, we propose a novel and effective urban metro OD flow prediction method (UMOD), comprising three core modules: a data embedding module, a temporal relation module, and a spatial relation module. The data embedding module projects raw OD pair inputs into hidden space representations, which are subsequently processed by the temporal and spatial relation modules to capture both inter-pair and intra-pair spatio-temporal dependencies. Experimental results on two real-world urban metro OD flow datasets demonstrate that adopting the OD pairs perspective is critical for accurate metro OD flow prediction. Our method outperforms existing approaches, delivering superior predictive performance.
Related papers
- Harnessing LLMs for Cross-City OD Flow Prediction [5.6685153523382015]
We introduce a new method for cross-city Origin-Destination (OD) flow prediction using Large Language Models (LLMs)
Our approach leverages the advanced semantic understanding and contextual learning capabilities of LLMs to bridge the gap between cities with different characteristics.
Our novel framework involves four major components: collecting OD training datasets from a source city, instruction-tuning the LLMs, predicting destination POIs in a target city, and identifying the locations that best match the predicted destination POIs.
arXiv Detail & Related papers (2024-09-05T23:04:28Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
Rapid urbanization has significantly escalated traffic congestion, underscoring the need for advanced congestion prediction services.
We introduce a Congestion Prediction Mixture-of-Experts, CP-MoE, to address the challenges.
CP-MoE has been deployed in DiDi to improve the accuracy and reliability of the travel time estimation system.
arXiv Detail & Related papers (2024-06-14T12:57:17Z) - ODMixer: Fine-grained Spatial-temporal MLP for Metro Origin-Destination Prediction [89.46685577447496]
We propose a fine-grained spatial-temporal architecture for metro Origin-Destination (OD) prediction, namely ODMixer. Specifically, our ODMixer has double-branch structure and involves the Channel Mixer, the Multi-view Mixer, and the Bidirectional Trend Learner.
arXiv Detail & Related papers (2024-04-24T08:46:25Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Parallel Multi-Graph Convolution Network For Metro Passenger Volume
Prediction [8.536743588315696]
This paper proposes a deep learning model composed of Parallel multi-graph convolution and stacked Bidirectional unidirectional Gated Recurrent Unit (PB-GRU)
Experiments on two real-world datasets of subway passenger flow show the efficacy of the model.
arXiv Detail & Related papers (2021-08-29T13:07:18Z) - Online Metro Origin-Destination Prediction via Heterogeneous Information
Aggregation [99.54200992904721]
We propose a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM) to jointly learn the evolutionary patterns of OD and DO ridership.
An OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices.
A DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership.
Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously.
arXiv Detail & Related papers (2021-07-02T10:11:51Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.