ODMixer: Fine-grained Spatial-temporal MLP for Metro Origin-Destination Prediction
- URL: http://arxiv.org/abs/2404.15734v3
- Date: Thu, 18 Jul 2024 03:30:17 GMT
- Title: ODMixer: Fine-grained Spatial-temporal MLP for Metro Origin-Destination Prediction
- Authors: Yang Liu, Binglin Chen, Yongsen Zheng, Lechao Cheng, Guanbin Li, Liang Lin,
- Abstract summary: We propose a fine-grained spatial-temporal architecture for metro Origin-Destination (OD) prediction, namely ODMixer. Specifically, our ODMixer has double-branch structure and involves the Channel Mixer, the Multi-view Mixer, and the Bidirectional Trend Learner.
- Score: 89.46685577447496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metro Origin-Destination (OD) prediction is a crucial yet challenging spatial-temporal prediction task in urban computing, which aims to accurately forecast cross-station ridership for optimizing metro scheduling and enhancing overall transport efficiency. Analyzing fine-grained and comprehensive relations among stations effectively is imperative for metro OD prediction. However, existing metro OD models either mix information from multiple OD pairs from the station's perspective or exclusively focus on a subset of OD pairs. These approaches may overlook fine-grained relations among OD pairs, leading to difficulties in predicting potential anomalous conditions. To address these challenges, we analyze traffic variations from the perspective of all OD pairs and propose a fine-grained spatial-temporal MLP architecture for metro OD prediction, namely ODMixer. Specifically, our ODMixer has double-branch structure and involves the Channel Mixer, the Multi-view Mixer, and the Bidirectional Trend Learner. The Channel Mixer aims to capture short-term temporal relations among OD pairs, the Multi-view Mixer concentrates on capturing relations from both origin and destination perspectives. To model long-term temporal relations, we introduce the Bidirectional Trend Learner. Extensive experiments on two large-scale metro OD prediction datasets HZMOD and SHMO demonstrate the advantages of our ODMixer. Our code is available at https://github.com/KLatitude/ODMixer.
Related papers
- UMOD: A Novel and Effective Urban Metro Origin-Destination Flow Prediction Method [18.026364560086954]
We propose an effective urban metro flow prediction method (UMOD) comprising three core modules.
The data embedding module projects raw OD pair inputs into hidden space representations.
The temporal and spatial relation modules are processed by the temporal and spatial relation modules to capture both inter-pair and intra-pair OD-temporal dependencies.
arXiv Detail & Related papers (2024-09-08T01:44:46Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
Rapid urbanization has significantly escalated traffic congestion, underscoring the need for advanced congestion prediction services.
We introduce a Congestion Prediction Mixture-of-Experts, CP-MoE, to address the challenges.
CP-MoE has been deployed in DiDi to improve the accuracy and reliability of the travel time estimation system.
arXiv Detail & Related papers (2024-06-14T12:57:17Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
We propose a novel barycenter formulation for reconstructing Diffusion history from A single SnapsHot (DASH)
We prove that estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation.
We also develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO)
arXiv Detail & Related papers (2023-06-01T09:39:32Z) - Parallel Multi-Graph Convolution Network For Metro Passenger Volume
Prediction [8.536743588315696]
This paper proposes a deep learning model composed of Parallel multi-graph convolution and stacked Bidirectional unidirectional Gated Recurrent Unit (PB-GRU)
Experiments on two real-world datasets of subway passenger flow show the efficacy of the model.
arXiv Detail & Related papers (2021-08-29T13:07:18Z) - Multi-View TRGRU: Transformer based Spatiotemporal Model for Short-Term
Metro Origin-Destination Matrix Prediction [12.626657411944949]
We propose a hy-brid framework Multi-view TRGRU to address OD metro matrix prediction.
In particular, it uses three modules to model three flow change patterns: recent trend, daily trend, weekly trend.
In each module, a multi-view representation based on embedding for each station is constructed and fed into a transformer based re- gated current structure.
arXiv Detail & Related papers (2021-08-09T09:32:42Z) - Online Metro Origin-Destination Prediction via Heterogeneous Information
Aggregation [99.54200992904721]
We propose a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM) to jointly learn the evolutionary patterns of OD and DO ridership.
An OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices.
A DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership.
Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously.
arXiv Detail & Related papers (2021-07-02T10:11:51Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.