Soft Actor-Critic with Beta Policy via Implicit Reparameterization Gradients
- URL: http://arxiv.org/abs/2409.04971v1
- Date: Sun, 8 Sep 2024 04:30:51 GMT
- Title: Soft Actor-Critic with Beta Policy via Implicit Reparameterization Gradients
- Authors: Luca Della Libera,
- Abstract summary: Soft actor-critic (SAC) mitigates poor sample efficiency by combining policy optimization and off-policy learning.
It is limited to distributions whose gradients can be computed through the re parameterization trick.
We extend this technique to train SAC with the beta policy on simulated robot locomotion environments.
Experimental results show that the beta policy is a viable alternative, as it outperforms the normal policy and is on par with the normal policy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep reinforcement learning have achieved impressive results in a wide range of complex tasks, but poor sample efficiency remains a major obstacle to real-world deployment. Soft actor-critic (SAC) mitigates this problem by combining stochastic policy optimization and off-policy learning, but its applicability is restricted to distributions whose gradients can be computed through the reparameterization trick. This limitation excludes several important examples such as the beta distribution, which was shown to improve the convergence rate of actor-critic algorithms in high-dimensional continuous control problems thanks to its bounded support. To address this issue, we investigate the use of implicit reparameterization, a powerful technique that extends the class of reparameterizable distributions. In particular, we use implicit reparameterization gradients to train SAC with the beta policy on simulated robot locomotion environments and compare its performance with common baselines. Experimental results show that the beta policy is a viable alternative, as it outperforms the normal policy and is on par with the squashed normal policy, which is the go-to choice for SAC. The code is available at https://github.com/lucadellalib/sac-beta.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Smoothing Policy Iteration for Zero-sum Markov Games [9.158672246275348]
We propose the smoothing policy robustness (SPI) algorithm to solve the zero-sum MGs approximately.
Specially, the adversarial policy is served as the weight function to enable an efficient sampling over action spaces.
We also propose a model-based algorithm called Smooth adversarial Actor-critic (SaAC) by extending SPI with the function approximations.
arXiv Detail & Related papers (2022-12-03T14:39:06Z) - On the Hidden Biases of Policy Mirror Ascent in Continuous Action Spaces [23.186300629667134]
We study the convergence of policy gradient algorithms under heavy-tailed parameterizations.
Our main theoretical contribution is the establishment that this scheme converges with constant step and batch sizes.
arXiv Detail & Related papers (2022-01-28T18:54:30Z) - Proximal Policy Optimization with Continuous Bounded Action Space via
the Beta Distribution [0.0]
In this work, we investigate how this Beta policy performs when it is trained by the Proximal Policy Optimization algorithm on two continuous control tasks from OpenAI gym.
For both tasks, the Beta policy is superior to the Gaussian policy in terms of agent's final expected reward, also showing more stability and faster convergence of the training process.
arXiv Detail & Related papers (2021-11-03T13:13:00Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
We consider an improper reinforcement learning setting where the learner is given M base controllers for an unknown Markov Decision Process.
We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
arXiv Detail & Related papers (2021-02-16T14:53:55Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
Off-policy Reinforcement Learning holds the promise of better data efficiency.
Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates.
We propose a nonparametric Bellman equation, which can be solved in closed form.
arXiv Detail & Related papers (2020-10-27T13:40:06Z) - DDPG++: Striving for Simplicity in Continuous-control Off-Policy
Reinforcement Learning [95.60782037764928]
We show that simple Deterministic Policy Gradient works remarkably well as long as the overestimation bias is controlled.
Second, we pinpoint training instabilities, typical of off-policy algorithms, to the greedy policy update step.
Third, we show that ideas in the propensity estimation literature can be used to importance-sample transitions from replay buffer and update policy to prevent deterioration of performance.
arXiv Detail & Related papers (2020-06-26T20:21:12Z) - Kalman meets Bellman: Improving Policy Evaluation through Value Tracking [59.691919635037216]
Policy evaluation is a key process in Reinforcement Learning (RL)
We devise an optimization method, called Kalman Optimization for Value Approximation (KOVA)
KOVA minimizes a regularized objective function that concerns both parameter and noisy return uncertainties.
arXiv Detail & Related papers (2020-02-17T13:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.