Visual Grounding with Multi-modal Conditional Adaptation
- URL: http://arxiv.org/abs/2409.04999v1
- Date: Sun, 8 Sep 2024 07:08:58 GMT
- Title: Visual Grounding with Multi-modal Conditional Adaptation
- Authors: Ruilin Yao, Shengwu Xiong, Yichen Zhao, Yi Rong,
- Abstract summary: Visual grounding is the task of locating objects specified by natural language expressions.
We introduce Multi-modal Conditional Adaptation (MMCA), which enables the visual encoder to adaptively update weights.
MMCA achieves significant improvements and state-of-the-art results.
- Score: 14.177510695317098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual grounding is the task of locating objects specified by natural language expressions. Existing methods extend generic object detection frameworks to tackle this task. They typically extract visual and textual features separately using independent visual and textual encoders, then fuse these features in a multi-modal decoder for final prediction. However, visual grounding presents unique challenges. It often involves locating objects with different text descriptions within the same image. Existing methods struggle with this task because the independent visual encoder produces identical visual features for the same image, limiting detection performance. Some recently approaches propose various language-guided visual encoders to address this issue, but they mostly rely solely on textual information and require sophisticated designs. In this paper, we introduce Multi-modal Conditional Adaptation (MMCA), which enables the visual encoder to adaptively update weights, directing its focus towards text-relevant regions. Specifically, we first integrate information from different modalities to obtain multi-modal embeddings. Then we utilize a set of weighting coefficients, which generated from the multimodal embeddings, to reorganize the weight update matrices and apply them to the visual encoder of the visual grounding model. Extensive experiments on four widely used datasets demonstrate that MMCA achieves significant improvements and state-of-the-art results. Ablation experiments further demonstrate the lightweight and efficiency of our method. Our source code is available at: https://github.com/Mr-Bigworth/MMCA.
Related papers
- AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding [96.01726275876548]
We present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions.
We devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images.
Our model is capable of processing images with resolutions up to $1008times 1008$.
arXiv Detail & Related papers (2024-08-30T03:16:49Z) - Improving Visual Commonsense in Language Models via Multiple Image Generation [41.565399860320966]
Existing large language models (LLMs) are primarily trained using textual data only.
Visual Language Models, which excel at visually-oriented tasks, often fail at non-visual tasks such as basic commonsense reasoning.
This divergence highlights a critical challenge - the integration of robust visual understanding with foundational text-based language reasoning.
arXiv Detail & Related papers (2024-06-19T15:17:10Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPT is a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language.
Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image.
Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human.
arXiv Detail & Related papers (2023-07-17T15:51:47Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
We propose a decoder-only model for multimodal tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
We demonstrate that joint learning of these diverse objectives is simple, effective, and maximizes the weight-sharing of the model across these tasks.
Our model achieves the state of the art on image-text and text-image retrieval, video question answering and open-vocabulary detection tasks, outperforming much larger and more extensively trained foundational models.
arXiv Detail & Related papers (2023-03-29T16:42:30Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z) - Improving Visual Grounding with Visual-Linguistic Verification and
Iterative Reasoning [42.29650807349636]
We propose a transformer-based framework for accurate visual grounding.
We develop a visual-linguistic verification module to focus the visual features on regions relevant to the textual descriptions.
A language-guided feature encoder is also devised to aggregate the visual contexts of the target object to improve the object's distinctiveness.
arXiv Detail & Related papers (2022-04-30T13:48:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.