論文の概要: Vision-fused Attack: Advancing Aggressive and Stealthy Adversarial Text against Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2409.05021v1
- Date: Sun, 8 Sep 2024 08:22:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 19:40:09.918233
- Title: Vision-fused Attack: Advancing Aggressive and Stealthy Adversarial Text against Neural Machine Translation
- Title(参考訳): 視覚融合攻撃: ニューラルネットワーク翻訳に対する攻撃的・頑健な敵対的テキストの促進
- Authors: Yanni Xue, Haojie Hao, Jiakai Wang, Qiang Sheng, Renshuai Tao, Yu Liang, Pu Feng, Xianglong Liu,
- Abstract要約: 本稿では,視覚融合攻撃(VFA)フレームワークを提案する。
そこで本研究では,ヒトのテキスト読解機構を整列させるために,認識が保持するテキスト選択戦略を提案する。
- 参考スコア(独自算出の注目度): 24.237246648082085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While neural machine translation (NMT) models achieve success in our daily lives, they show vulnerability to adversarial attacks. Despite being harmful, these attacks also offer benefits for interpreting and enhancing NMT models, thus drawing increased research attention. However, existing studies on adversarial attacks are insufficient in both attacking ability and human imperceptibility due to their sole focus on the scope of language. This paper proposes a novel vision-fused attack (VFA) framework to acquire powerful adversarial text, i.e., more aggressive and stealthy. Regarding the attacking ability, we design the vision-merged solution space enhancement strategy to enlarge the limited semantic solution space, which enables us to search for adversarial candidates with higher attacking ability. For human imperceptibility, we propose the perception-retained adversarial text selection strategy to align the human text-reading mechanism. Thus, the finally selected adversarial text could be more deceptive. Extensive experiments on various models, including large language models (LLMs) like LLaMA and GPT-3.5, strongly support that VFA outperforms the comparisons by large margins (up to 81%/14% improvements on ASR/SSIM).
- Abstract(参考訳): ニューラルネットワーク翻訳(NMT)モデルは私たちの日常生活で成功する一方で、敵の攻撃に対する脆弱性を示す。
有害であるにもかかわらず、これらの攻撃はNMTモデルの解釈と強化の利点も提供し、研究の注目を集めた。
しかし,既存の対人攻撃研究は,言語の範囲にのみ焦点をあてているため,攻撃能力と人間の知覚能力の両方において不十分である。
本稿では、より攻撃的でステルス的な強力な敵対的テキストを取得するために、新しい視覚融合攻撃(VFA)フレームワークを提案する。
攻撃能力に関して、我々は、限られたセマンティック・ソリューション・スペースを拡大するために、視覚統合されたソリューション・スペース拡張戦略を設計し、より高い攻撃能力を持つ敵候補を探索することを可能にする。
そこで本研究では,人間の文字読解機構を整列させるために,認識に拘束されたテキスト選択戦略を提案する。
したがって、最終的に選択された敵対的文章は、より欺くことができる。
LLaMAやGPT-3.5のような大規模言語モデル(LLM)を含む様々なモデルに対する大規模な実験は、VFAが大きなマージン(ASR/SSIMでは最大81%/14%改善)で比較を上回っていることを強く支持している。
関連論文リスト
- Chain of Attack: On the Robustness of Vision-Language Models Against Transfer-Based Adversarial Attacks [34.40254709148148]
事前学習された視覚言語モデル(VLM)は、画像および自然言語理解において顕著な性能を示した。
彼らの潜在的な安全性と堅牢性の問題は、敵がシステムを回避し、悪意のある攻撃を通じて有害なコンテンツを生成することを懸念する。
本稿では,マルチモーダルなセマンティック・アップデートに基づいて,敵対的事例の生成を反復的に促進するアタック・チェーン(CoA)を提案する。
論文 参考訳(メタデータ) (2024-11-24T05:28:07Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors [31.383591942592467]
視覚言語モデル(VLM)は、視覚とテキストのデータを組み合わせて理解と相互作用を強化する革新的な方法を提供する。
パッチベースの敵攻撃は、物理的な視覚応用において最も現実的な脅威モデルと考えられている。
本研究では,スムージング技術に根ざした防御機構であるSmoothVLMを導入し,VLMをパッチ付き視覚プロンプトインジェクタの脅威から保護する。
論文 参考訳(メタデータ) (2024-05-17T04:19:19Z) - Semantic Stealth: Adversarial Text Attacks on NLP Using Several Methods [0.0]
テキスト敵攻撃は、入力テキストを意図的に操作することで、モデルの予測を誤解させる。
本稿では,BERT,BERT-on-BERT,Fraud Bargain's Attack (FBA)について述べる。
PWWSは最も強力な敵として登場し、複数の評価シナリオで他のメソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-08T02:55:01Z) - Few-Shot Adversarial Prompt Learning on Vision-Language Models [62.50622628004134]
知覚不能な逆境摂動に対するディープニューラルネットワークの脆弱性は、広く注目を集めている。
それまでの努力は、相手の視覚的特徴をテキストの監督と整合させることで、ゼロショットの敵の堅牢性を達成した。
本稿では、限られたデータで入力シーケンスを適応させることで、対向性を大幅に向上させる、数ショットの対向的プロンプトフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-21T18:28:43Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - How do humans perceive adversarial text? A reality check on the validity
and naturalness of word-based adversarial attacks [4.297786261992324]
敵対的攻撃は 不正なアルゴリズムだ 入力テキストを不当に修正して モデルに誤った予測をさせる
378人の被験者を対象に,最先端の手法によるテキスト対逆例の知覚可能性について調査した。
以上の結果から,既存のテキスト攻撃は人間が関与する現実のシナリオでは実行不可能であることが示唆された。
論文 参考訳(メタデータ) (2023-05-24T21:52:13Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。