論文の概要: Unsupervised Multimodal 3D Medical Image Registration with Multilevel Correlation Balanced Optimization
- arxiv url: http://arxiv.org/abs/2409.05040v1
- Date: Sun, 8 Sep 2024 09:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 19:30:04.061664
- Title: Unsupervised Multimodal 3D Medical Image Registration with Multilevel Correlation Balanced Optimization
- Title(参考訳): 多レベル平衡最適化を用いた教師なしマルチモーダル3次元医用画像登録
- Authors: Jiazheng Wang, Xiang Chen, Yuxi Zhang, Min Liu, Yaonan Wang, Hang Zhang,
- Abstract要約: マルチレベル相関バランス最適化に基づく教師なしマルチモーダル医用画像登録手法を提案する。
異なるモードの術前医療画像に対して、変形場間の最大融合により有効な情報のアライメントと積み重ねを実現する。
- 参考スコア(独自算出の注目度): 22.633633605566214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2024, an unsupervised multimodal medical image registration method based on multilevel correlation balanced optimization (MCBO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the deformation field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. For preoperative medical images in different modalities, the alignment and stacking of valid information between different modalities is achieved by the maximum fusion between deformation fields. Our method focuses on the ReMIND2Reg task in Learn2Reg 2024, and to verify the generality of the method, we also tested it on the COMULIS3DCLEM task. Based on the results, our method achieved second place in the validation of both two tasks.
- Abstract(参考訳): 多モーダル画像登録に基づく手術ナビゲーションは,術中における標的領域の相対的な位置を重要な解剖学的構造に示すことにより,外科医に術中指導を提供する上で重要な役割を担っている。
しかし, 術中の組織変位と除去による術中画像の変形とマルチモーダル画像の違いにより, 術中および術中マルチモーダル画像の有効登録は大きな課題に直面した。
Learn2Reg 2024のマルチモーダル画像登録問題に対処するために,MCBO(Multilevel correlation balanced optimization)に基づく教師なしマルチモーダル医用画像登録手法を設計した。
まず、モダリティ独立近所記述子に基づいて各モダリティの特徴を抽出し、特徴空間にマルチモーダル画像をマッピングする。
第二に,多段階のピラミッド融合最適化機構は,重み付き相関解析と重み付き結合凸最適化により,大域的最適化と変形場の局所的詳細補完を実現するように設計されている。
異なるモダリティの術前医療画像に対して、異なるモダリティ間の有効情報のアライメントと積み重ねは、変形場間の最大融合によって達成される。
本稿では,Learner2Reg 2024におけるReMIND2Regタスクに着目し,その汎用性を検証するため,COMULIS3DCLEMタスクでテストした。
その結果,本手法は両課題の検証において第2位となった。
関連論文リスト
- Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy [9.060365057476133]
子宮頸癌は女性の死因の1つである。
予備的な空間アライメントアルゴリズムと弱教師付きマルチモーダル登録ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-21T15:05:51Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
モダリティ内およびモダリティ内アフィンおよび非リグイド画像登録は、臨床画像診断において必須の医用画像解析プロセスである。
本稿では、アフィンおよび非剛性変換を正確にモデル化できる教師なしディープラーニング登録手法を提案する。
本手法は,モーダリティ不変の潜在反感を学習するために,双方向のモーダリティ画像合成を行う。
論文 参考訳(メタデータ) (2022-03-07T12:54:33Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
放射線科医の費用負担を軽減するための医用画像のクロスモダリティ合成
本稿では,教師なしまたは教師なし(非ペア画像データ)の設定が可能な医用画像における画像から画像への変換手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T16:22:31Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
教師なし学習に基づく手法は、変形可能な画像登録における精度と効率よりも有望な性能を示す。
既存の手法の予測変形場は、登録済み画像対に完全に依存する。
両モデルから推定される変形場を利用する新しい多モード登録フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-12T05:47:20Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
マルチモーダルイメージングセンサーは、現在、介入治療作業フローの異なるステップに関与している。
この情報を統合するには、取得した画像間の観測された解剖の正確な空間的アライメントに依存する。
本稿では, ボクセルパッチを用いた地域登録手法が, ボクセルワイドアプローチと「グローバルシフト」アプローチとの間に優れた構造的妥協をもたらすことを示す。
論文 参考訳(メタデータ) (2020-11-09T11:27:45Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。