論文の概要: Sight View Constraint for Robust Point Cloud Registration
- arxiv url: http://arxiv.org/abs/2409.05065v1
- Date: Sun, 8 Sep 2024 11:58:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 19:30:04.045696
- Title: Sight View Constraint for Robust Point Cloud Registration
- Title(参考訳): ロバストポイントクラウド登録のための視線制約
- Authors: Yaojie Zhang, Weijun Wang, Tianlun Huang, Zhiyong Wang, Wei Feng,
- Abstract要約: 部分的ポイントクラウド登録(部分的PCR)は、特に低い重複率を扱う場合、難しいタスクである。
本稿では、不正確な変換を確定的に識別する、新規で一般的な視線制約(SVC)を提案する。
挑戦的な3DLoMatchデータセットでは、登録リコールが78%から82%に増加し、最先端の結果が得られた。
- 参考スコア(独自算出の注目度): 13.216523566864641
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial to Partial Point Cloud Registration (partial PCR) remains a challenging task, particularly when dealing with a low overlap rate. In comparison to the full-to-full registration task, we find that the objective of partial PCR is still not well-defined, indicating no metric can reliably identify the true transformation. We identify this as the most fundamental challenge in partial PCR tasks. In this paper, instead of directly seeking the optimal transformation, we propose a novel and general Sight View Constraint (SVC) to conclusively identify incorrect transformations, thereby enhancing the robustness of existing PCR methods. Extensive experiments validate the effectiveness of SVC on both indoor and outdoor scenes. On the challenging 3DLoMatch dataset, our approach increases the registration recall from 78\% to 82\%, achieving the state-of-the-art result. This research also highlights the significance of the decision version problem of partial PCR, which has the potential to provide novel insights into the partial PCR problem.
- Abstract(参考訳): 部分的ポイントクラウド登録(部分的PCR)は、特に低い重複率を扱う場合、依然として難しい課題である。
フル・トゥ・フル・レジストメント・タスクと比較して、部分PCRの目的はまだ明確に定義されておらず、真の変換を確実に特定できる指標が存在しないことが分かる。
我々はこれを部分PCRタスクにおける最も根本的な課題とみなしている。
本稿では、最適な変換を直接求める代わりに、不正確な変換を確定的に識別し、既存のPCR法の堅牢性を高めるために、新規で一般的なSVC(Sight View Constraint)を提案する。
大規模な実験は、屋内および屋外の両方でSVCの有効性を検証する。
挑戦的な3DLoMatchデータセットでは、登録リコールが78\%から82\%に増加し、最先端の結果が得られます。
本研究は、部分PCRにおける決定バージョン問題の重要性を強調し、部分PCR問題に対する新たな洞察を提供する可能性がある。
関連論文リスト
- UniRiT: Towards Few-Shot Non-Rigid Point Cloud Registration [15.17153502202129]
非剛性点雲の登録は、3Dシーン理解、特に手術ナビゲーションにおいて重要な課題である。
非剛体パターンは剛体パターンよりも柔軟で複雑であるため、既存の手法は著しく劣化する。
MedMatch3Dという新しいデータセットを導入し、実際のヒトの臓器からなり、サンプル分布に高いばらつきを示す。
論文 参考訳(メタデータ) (2024-10-30T11:06:23Z) - Knowledge Distillation via Query Selection for Detection Transformer [25.512519971607237]
本稿では, 知識蒸留を利用したDETR圧縮の課題について述べる。
DETRのパフォーマンスの重要な側面は、オブジェクト表現を正確に解釈するためのクエリへの依存である。
我々の視覚分析から,前景要素に着目した強相関クエリが蒸留結果の向上に不可欠であることが示唆された。
論文 参考訳(メタデータ) (2024-09-10T11:49:28Z) - ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights [1.3723120574076126]
我々は欧州人権裁判所(ECtHR)の判断に基づく事前事例検索データセットを開発する。
我々は、様々な負のサンプリング戦略を用いて、様々な語彙と密度の検索手法をベンチマークする。
PCRでは,難易度に基づく陰性サンプリングが有効でないことがわかった。
論文 参考訳(メタデータ) (2024-03-31T08:06:54Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
ポイントクラウド登録(PCR)は、2つのポイントクラウド間の相対的な厳密な変換を推定する。
本稿では, PCR を拡散確率過程として定式化し, ノイズ変換を基礎的真理にマッピングする。
実験ではDiffusionPCRの有効性を示し,3Dおよび3DLoMatchに対する最先端の登録リコール率(95.3%/81.6%)を得た。
論文 参考訳(メタデータ) (2023-12-05T18:59:41Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
糖尿病網膜症(DR:diabetic retinopathy)は、視覚障害の主要な原因である。
硬口蓋の早期発見は、糖尿病の治療と視力喪失の予防に役立つDRの同定において重要な役割を担っている。
ハード・エクスデュート・セグメンテーションを最適化する新しい教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-22T17:39:00Z) - Optimizing Two-way Partial AUC with an End-to-end Framework [154.47590401735323]
ROC曲線のエリア(AUC)は、機械学習にとって重要な指標である。
最近の研究は、TPAUCが既存のPartial AUCメトリクスと本質的に矛盾していることを示している。
本論文では,この新指標を最適化するための最初の試行について述べる。
論文 参考訳(メタデータ) (2022-06-23T12:21:30Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Self-supervised Representation Learning with Relative Predictive Coding [102.93854542031396]
Relative Predictive Coding(RPC)は、新しいコントラスト表現学習目標である。
RPCは、トレーニング安定性、ミニバッチサイズ感度、ダウンストリームタスクパフォーマンスのバランスが良好である。
ベンチマークビジョンと音声自己教師型学習タスクにおけるRPCの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2021-03-21T01:04:24Z) - Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification [10.349616734896522]
本研究では,ReLUニューラルネットワークの逆入力摂動に対する堅牢性を検証する。
入力不確実性集合を分割し,各部分の緩和を個別に解くために,分岐とバウンドのアプローチをとる。
提案手法は緩和誤差を低減し,ReLUアクティベーションの性質を活かしたパーティションを用いてLP緩和を行うことによって完全に誤差を除去することを示す。
論文 参考訳(メタデータ) (2021-01-22T19:36:40Z) - Solving Missing-Annotation Object Detection with Background
Recalibration Loss [49.42997894751021]
本稿では,新しい,かつ困難な検出シナリオに焦点を当てる。 真のオブジェクト/インスタンスの大部分は,データセットにラベル付けされていない。
従来, ソフトサンプリングを用いて, 正の例と重なり合うRoIsの勾配を再重み付けする手法が提案されてきた。
本稿では、予め定義されたIoU閾値と入力画像に基づいて損失信号を自動的に校正できる、バックグラウンド校正損失(BRL)と呼ばれる優れた解を提案する。
論文 参考訳(メタデータ) (2020-02-12T23:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。