Sight View Constraint for Robust Point Cloud Registration
- URL: http://arxiv.org/abs/2409.05065v1
- Date: Sun, 8 Sep 2024 11:58:20 GMT
- Title: Sight View Constraint for Robust Point Cloud Registration
- Authors: Yaojie Zhang, Weijun Wang, Tianlun Huang, Zhiyong Wang, Wei Feng,
- Abstract summary: Partial to Partial Point Cloud Registration (partial PCR) is a challenging task, particularly when dealing with a low overlap rate.
We propose a novel and general Sight View Constraint (SVC) to conclusively identify incorrect transformations.
On the challenging 3DLoMatch dataset, our approach increases the registration recall from 78% to 82%, achieving the state-of-the-art result.
- Score: 13.216523566864641
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial to Partial Point Cloud Registration (partial PCR) remains a challenging task, particularly when dealing with a low overlap rate. In comparison to the full-to-full registration task, we find that the objective of partial PCR is still not well-defined, indicating no metric can reliably identify the true transformation. We identify this as the most fundamental challenge in partial PCR tasks. In this paper, instead of directly seeking the optimal transformation, we propose a novel and general Sight View Constraint (SVC) to conclusively identify incorrect transformations, thereby enhancing the robustness of existing PCR methods. Extensive experiments validate the effectiveness of SVC on both indoor and outdoor scenes. On the challenging 3DLoMatch dataset, our approach increases the registration recall from 78\% to 82\%, achieving the state-of-the-art result. This research also highlights the significance of the decision version problem of partial PCR, which has the potential to provide novel insights into the partial PCR problem.
Related papers
- RBFIM: Perceptual Quality Assessment for Compressed Point Clouds Using Radial Basis Function Interpolation [58.04300937361664]
One of the main challenges in point cloud compression (PCC) is how to evaluate the perceived distortion so that the RB can be optimized for perceptual quality.
We propose a novel assessment method, utilizing radial basis function (RBF) to convert discrete point features into a continuous feature function for the distorted point cloud.
arXiv Detail & Related papers (2025-03-18T11:25:55Z) - Likelihood-Ratio Regularized Quantile Regression: Adapting Conformal Prediction to High-Dimensional Covariate Shifts [35.16750653336608]
We introduce the likelihood ratio regularized quantile regression algorithm, which combines the pinball loss with a novel choice of regularization.
We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term.
Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks.
arXiv Detail & Related papers (2025-02-18T16:46:44Z) - UniRiT: Towards Few-Shot Non-Rigid Point Cloud Registration [15.17153502202129]
Non-rigid point cloud registration is a critical challenge in 3D scene understanding, particularly in surgical navigation.
Existing methods degrade significantly since non-rigid patterns are more flexible and complicated than rigid ones.
We introduce a new dataset, MedMatch3D, which consists of real human organs and exhibits high variability in sample distribution.
arXiv Detail & Related papers (2024-10-30T11:06:23Z) - Knowledge Distillation via Query Selection for Detection Transformer [25.512519971607237]
This paper addresses the challenge of compressing DETR by leveraging knowledge distillation.
A critical aspect of DETRs' performance is their reliance on queries to interpret object representations accurately.
Our visual analysis indicates that hard-negative queries, focusing on foreground elements, are crucial for enhancing distillation outcomes.
arXiv Detail & Related papers (2024-09-10T11:49:28Z) - Deep Learning-Based Point Cloud Registration: A Comprehensive Survey and Taxonomy [79.66031973540946]
We present a comprehensive survey and taxonomy on deep learning-based point cloud registration (DL-PCR)
For supervised DL-PCR methods, we organize the discussion based on key aspects, including the registration procedure.
We classify them into correspondence-based and correspondence-free approaches, depending on whether they require explicit identification of point-to-point correspondences.
arXiv Detail & Related papers (2024-04-22T02:05:15Z) - ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights [1.3723120574076126]
We develop a prior case retrieval dataset based on judgements from the European Court of Human Rights (ECtHR)
We benchmark different lexical and dense retrieval approaches with various negative sampling strategies.
We find that difficulty-based negative sampling strategies were not effective for the PCR task.
arXiv Detail & Related papers (2024-03-31T08:06:54Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds.
We propose formulating PCR as a denoising diffusion probabilistic process, mapping noisy transformations to the ground truth.
Our experiments showcase the effectiveness of our DiffusionPCR, yielding state-of-the-art registration recall rates (95.3%/81.6%) on 3D and 3DLoMatch.
arXiv Detail & Related papers (2023-12-05T18:59:41Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
Diabetic retinopathy (DR) is a leading global cause of blindness.
Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss.
We present a novel supervised contrastive learning framework to optimize hard exudate segmentation.
arXiv Detail & Related papers (2023-02-22T17:39:00Z) - Optimizing Two-way Partial AUC with an End-to-end Framework [154.47590401735323]
Area Under the ROC Curve (AUC) is a crucial metric for machine learning.
Recent work shows that the TPAUC is essentially inconsistent with the existing Partial AUC metrics.
We present the first trial in this paper to optimize this new metric.
arXiv Detail & Related papers (2022-06-23T12:21:30Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Self-supervised Representation Learning with Relative Predictive Coding [102.93854542031396]
Relative Predictive Coding (RPC) is a new contrastive representation learning objective.
RPC maintains a good balance among training stability, minibatch size sensitivity, and downstream task performance.
We empirically verify the effectiveness of RPC on benchmark vision and speech self-supervised learning tasks.
arXiv Detail & Related papers (2021-03-21T01:04:24Z) - Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification [10.349616734896522]
We study certifying the robustness of ReLU neural networks against adversarial input perturbations.
We take a branch-and-bound approach to propose partitioning the input uncertainty set and solving the relaxations on each part separately.
We show that this approach reduces relaxation error, and that the error is eliminated entirely upon performing an LP relaxation with a partition intelligently designed to exploit the nature of the ReLU activations.
arXiv Detail & Related papers (2021-01-22T19:36:40Z) - Solving Missing-Annotation Object Detection with Background
Recalibration Loss [49.42997894751021]
This paper focuses on a novel and challenging detection scenario: A majority of true objects/instances is unlabeled in the datasets.
Previous art has proposed to use soft sampling to re-weight the gradients of RoIs based on the overlaps with positive instances, while their method is mainly based on the two-stage detector.
In this paper, we introduce a superior solution called Background Recalibration Loss (BRL) that can automatically re-calibrate the loss signals according to the pre-defined IoU threshold and input image.
arXiv Detail & Related papers (2020-02-12T23:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.